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1.10 Discuss the concept of
shared resources  in a
distributed system. 
Give examples of
resources that might
be shared.  Say what
the implications of
resource sharing are
for:

(a) the types of
application that can be
supported;

(b) hardware costs in a
distributed system.

Shared resources are among the primary benefits of any networked system,
including distributed systems.  Both hardware and software resources can be
shared, including printers, databases, and internet connections.  By sharing
resources, companies can save money while providing a richer variety of
higher-quality resources to users.  Shared resources also make possible
entirely new categories of applications, including many extremely successful
“killer apps” which would have been impossible to implement without access
to shared resources.

Printers were some of the first and most popular resources to be shared
across a network.  In the school where I last worked as Network Manager, we
had about 200 client nodes (Macs and PCs) on our network, each of which
required access to a printer.  Even by purchasing the cheapest dot-matrix or
inkjet models available, we would have easily incurred $40,000 in capital
expenditures and encumbered an immense burden of consumable costs had we
tried to outfit each individual workstation with a local printer.  Instead we
networked ten color inkjets, five high-speed black-and-white laser printers,
and one high-speed color laser printer, all for less than $20,000.  As a result,
each user received reasonably convenient access to a variety of printing
devices, all of which provided greater output quality and/or speed than an
economy-priced local printer could have.

Software applications and files can also be shared across a network.  For
example, also at my school, I installed a CD-ROM server that provided LAN-
wide access to multimedia encyclopedias, which allowed concurrent users to
query and retrieve a variety of data formats.  These were “read-only” shared
databases which extended functionality to older workstations which weren’t
equipped with CD-ROM drives.  I also developed a “computer work order”
database that teachers could use to electronically submit computer service
requests.  That was a read/write shared database which allowed concurrent
add/modify/delete transactions.  Both of these were software resources being
shared across a network.

Of the two, the work order system was the most significant, because it
represented a distributed system which could not have been implemented
without resource sharing (the multimedia encyclopedias, in contrast, could
theoretically have been implemented without resource sharing, at a much
higher cost, by purchasing individual CD-ROM drives and encyclopedia
programs for each potential user).  A genuine multiuser transaction system
can be implemented only through common access to a single shared database
(whether physically distributed or centrally consolidated).

A number of so-called “killer apps” have evolved in the marketplace to
take advantage of this functionality.  One of the most common is the
nationwide Automatic Teller Machine network which allows access to shared
bank databases from remote terminals.  Even more common are the credit-
card authentication systems used by Visa and Mastercard to provide up-to-the-
minute cardholder account information to merchandisers across the country. 
One of my favorite commercially successful distributed systems is the
Amazon.com virtual bookstore, which is completely dependent upon its
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shared database of titles and reviews.  Another oft-cited example in business
trade journals is the Wal-mart inventory system, which uses a distributed
client-server approach to greatly increase the efficiency of their distribution
and inventory procedures.

1.13 What is openness? Openness is the characteristic of a system describing the ease with which it
may be interfaced by other systems, configured to meet specific needs, and
extended with new capabilities and functionality.  In a commercial context,
the trait usually represents the ease with which one vendor may connect to or
augment another vendor’s product.  There are three main ways to make a
system open.  The first is to design the system in a modular, structured fashion
with consistent module interfaces and APIs, typically with some system of
hooks, interrupts, or events to which future modules may be linked.  The
second is to publish those interfaces so that other programmers may write
modules which abide by them.  The third is to avoid hard-coding
configuration details, instead allowing users and administrators to
conveniently modify key system variables which affect the system’s suitability
for a particular application or environment.

Unix is an essentially open operating system because it is composed of a
great many independent modules which generally conform to a standardized
calling syntax and share a common understanding of input, output, and error
devices, communication pipes, etc.  Any one of those modules (like the gcc
compiler) can be replaced or enhanced without necessarily disrupting the rest
of the OS.  The system is also readily configurable through straightforward
editing of the various “.conf” and “.cfg” files scanned at boot time.  Moreover,
since much of the source code for Unix is in the public domain (at least Linux
still is and, I think, FreeBSD), the interfaces are eminently accessible to
programmers.  Likewise, many of the applications and protocols frequently
associated with Unix, such as vi/emacs, NCSA httpd, and TCP/IP are open in
the sense that their interfaces are well-known and easily customized or
interfaced at very low levels.

Besides its convenience for programmers and system administrators,
openness is becoming a requisite for commercial success in consumer software
as well.  Two very popular examples of applications which owe much of their
success to their open and extensible nature are Adobe Photoshop and Netscape
Navigator.  Both support proprietary, but well-documented and published,
frameworks for extension through additional modules written by third-party
vendors.  Popular Photoshop filters include Kai’s Power Tools and Alien
Skin’s Eye Candy, both of which vastly increase artist productivity.  Similarly,
much of Netscape’s popularity is due to the ease with which users can
download and install third-party plug-ins which add support for video
streaming, vector graphic formats, and Acrobat files.  Other software products
which support this kind of plug-in architecture, and have thus spawned entire
industries of third-party extensions, include the applications QuarkXPress,
PageMaker, and Fractal Painter, and of course operating systems like
Windows95 and the MacOS.
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However, openness is not limited merely to software systems.  Hardware
systems can be made open as well by publishing and abiding by standard
physical connections, pin-outs, and power requirements.  The massive PC
clone industry was made possible not only by Microsoft’s popular (but
essentially closed) MS-DOS operating system, but also by the availability of
cheap, interchangeable modular components which could be mated to
industry-standard EISA or PCI bus designs.  Video cards, hard drive
controllers, and NICs from different vendors could be plugged into a universal
Intel-based motherboard and be expected to co-exist with a minimal amount
of playing (and praying).  The popular Centronics parallel print interface, RS-
232 serial interface, and SCSI system peripheral interface are other examples
of successful consumer-oriented open hardware standards.

1.16 Define concurrency
and parallelism.  What
opportunities for
parallelism arise in
distributed client-
server systems (for
example a distributed
UNIX system)?

Concurrency refers to multiple processes or operations that logically occur
at the same time or that appear to be simultaneous to the user(s), but whose
instructions may or may not literally be executed at precisely the same time. 
Non-parallel concurrency may be achieved through interleaving, time-sharing,
or very fast throughput of queued requests.  Parallelism refers to processes or
operations which literally do occur simultaneously and therefore require
multiple CPUs.

True parallelism remains a rarity on consumer- or business-oriented PCs
because of the high cost of multiple CPUs and due to the cost and complexity
of operating system and application software which can efficiently utilize
multiprocessing architectures.  On the other hand, parallelism has been
popular in mainframe environments for years because the cost-benefit ratio of
adding multiple processors to a large host system, which may support dozens
or hundreds of users, can be very favorable.  This is in contrast to
concurrency, since process interleaving and multithreaded operation have
become common features in most popular PC operating systems.

Distributed systems, on the other hand, encourage many kinds of parallel
operation by their very nature.  Since distributed systems tend to spread their
workload of services and resources across multiple computers, even low-end
single-CPU computers can partake in the fun of parallel processing.  The
advantages of such parallel computation are manifold.  Non-locking database
operations (read requests, for instance) can be serviced simultaneously by the
resource managers of replicated database files on different servers.  Floating-
point intensive rendering operations can be processed in parallel by sending
different objects to different client workstations for local rasterizing.

When I was a sophomore at UCF, a friend of mine who was the current
captain of our ACM “A” Programming Team engaged in a particularly unique
form of distributed parallel competition.  There is an annual international
Othello contest in which contestants write Othello programs which compete
against one another.  My friend’s program, written in Turbo C and 8086
Assembler, used SPX/IPX calls to distribute its game tree search and
evaluation (based on Shannon’s algorithm) across 92 Intel 80386 PCs
networked over ethernet.  As a result, it was able to search very deeply and
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very quickly.  On the day of the Othello contest, he and I had to be at Florida
International University for the Southeast regional ACM programming
tournament (another unrelated contest), so he had a friend execute and
monitor his Othello program and phone hourly reports down to us in Miami. 
Therefore, he himself was competing in parallel in two different contests, one
of which involved a massively parallel distributed system.  In the end, he
placed first in the Southeast regionals and placed second in the world with his
Othello program, which lost only to an anonymous computer from the north
known simply as “Harvey”.  A great day for my friend.

1.17 How can the design of
a distributed system
ensure that it will be
scalable?

The essence of scalability is that any resource utilized or accessed by a
system may be assumed to increase or decrease in quantity arbitrarily.  The
connected Internet is a example of a system which has scaled up gracefully
and with relative ease.  When Microsoft was developing WindowsNT, they
obviously gave some thought to scalability because they were able to later
produce not only the Wolfpack server clustering system but also the scaled-
down and minimalist WindowsCE with comparative ease.  Novell’s NDS,
introduced in Netware 4.0 and made usable in 4.1, is also an extremely
scalable directory system.

The primary design method for ensuring scalability is to assume that any
resource could exist in quantity (specifically, matching the regexp /x+/,
indicating one or more) and provide a mechanism for selecting one instance of
the desired resource from a pool.  Such quantities should theoretically be
allowed to grow without limit, but for the same of efficiency and performance
can usually be assumed to cap-out at about 10-1000 times the current
projected usage and availability (in other words, leave 3 to 10 address bits free
for future expansion).  That means that typical resources such as file servers,
printers, and even display consoles should not be hard-coded in as single
entities, but programmatically selected from a list of functionally similar
resources, even if the list begins as a set of only one element.  Furthermore,
when coding the name spaces for available printers, servers, users, etc, hash
tables composed of linked lists would be preferable to static arrays (or at any
rate, the arrays should be capable of dynamically resizing when they are
almost full or empty).

(Actually, to also meet the companion requirement for fault tolerance,
systems should be coded to deal with /x*/ instances of each resource—ie, 0 or
more—so that they will be able to calmly and predictably prompt users or
system administrators when a needed resource cannot be acquired, rather than
simply crashing with an unhelpful core dump.)

The Internet’s phenomenal growth and popularity with commercial and
consumer users over the past two years is directly attributable to the
availability of plentiful IP addresses for corporate LANs and for ISPs serving
home dial-up users.  There are so many addresses available because the
protocol was initially designed with a 32-bit address field, even though
projected usage in the 1970s and 1980s could have been easily been met with
a 16-bit field at most.  By “wasting” a little bandwidth and adding a little to
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network latency time, the designers left room for the massive hordes of online
users we see today.  However, even this generous name space is beginning to
seem cramped as hardware vendors and operating systems begin to assign IP
addresses not only to CPUs and user sessions, but to printers, monitors, and
even telephones.  As a result, there are already plans to introduce IP version 6,
which will replace current 4-byte IP addresses with 16-byte versions,
providing plenty of IP addresses for every television, VCR, and toaster oven in
the world—at least as far as we can see today J

1.18 Define fault tolerance. In our household, fault tolerance can be best summarized as “Jonathan-
proofing”, which is a reference to our two-year-old little boy.  Anything made
of linoleum, vinyl, or formica is fault-tolerant; most things made of glass,
fabric, and paper are not J

In the computer world, fault tolerance goes by other names: robustness,
crashworthiness, and idiot-proofing are common idioms.  Each of these refers
to a program’s (and by inference, programmer’s) ability to deal well with the
unexpected.  Typical faults which a well-written program must tolerate
gracefully run the gamut from the mundane (printers running out of paper,
floppies needing to be unlocked, e-mail addresses to be spell-checked) to the
catastrophic (construction workers cutting through network cable, custodians
tipping over file servers, leaky roofs in wiring cabinets—all of which I’ve
experienced first-hand).  In fact, while teaching middle school, my computer
labs had to deal with students shoving bubble gum into disk drives (followed
by a disk and a forced reboot); kids sticking bent paper clips into wall
electrical outlets and blowing entire circuits; Pepsi poured into keyboards;
well-meaning teachers plugging DB-25 serial devices into SCSI-1 ports; and
network cables stuck into digital phone jacks, which were then dialed and
rung (producing a surge of electricity which blew out NICs and
motherboards).

So long as the program in question is not actually running on one of these
abused systems, but merely depending on them as available resources, the
program should be able to detect the fact if not the type of the error and enter
some sort of fallback state.  Besides the typical log to STDERR and some sort of
visual notification to the user, a program might also need to trigger a rollback
if the fault has caused data to enter an undefined or unpredictable state.  Also,
if the system was designed in accordance with the creeds of scalability as
outlined above, the program may then be able to select a comparable resource
from its internal tables or external name and binding services and continue
operations on the newly acquired replacement resource.

For instance, the internet firewalls at Tribune corporation, the parent
company of The Orlando Sentinel and the source for our frame-relay cloud,
uses four BSD Unix stations for our firewall.  As it turned out, three of them
blew up last week, which slowed our internet connection to a crawl—but it did
keep working, because although the system was intended to be scaled and
load-balanced over four servers, it was sufficiently fault-tolerant to keep
running on only one.  Best of all, the entire problem was completely
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transparent to the users, who noticed a perceptible slowdown but otherwise
did not have to reconfigure their machines or deal with any error messages.

Some of the ways programs may be designed to be fault-tolerant include
automatic data validation and integrity checking, redundant mirrored
backups, RAID data storage, event-based error handlers, support for
transactional rollbacks, or inclusion of a remote notification system such as
built into the fabulously robust Compaq Proliant servers (which can page an
administrator in the middle of the night if a resource is suspected of nearing
or entering a fault state).

1.22 A department has a
multi-user computer, a
few workstations and a
number of terminals
and is planning to
extend its computing
resources.  Make the
case for installing a
distributed system
rather than another
multi-user computer
and terminals.

Having faced such a decision before, I can attest that the issue is a good bit
more complicated than the question suggests.  In fact, I’ve already seen one
mainframe-terminal system replaced with a poorly designed and badly
supported distributed system, and the department in question is currently in
the process of moving back to a centralized system.  Before I could
recommend such a migration in good faith, there are a number of preliminary
questions which must be addressed.

1) Assessed computing needs
What does the department use these computers for (which begs the

question of what kind of department is it)?  The truth is, many typical
departmental applications can be served perfectly well from time-shared
terminals.  What kind of work are these terminals performing?  What are the
bottlenecks?  Are there kinds of data the terminal users need to access but
cannot?  Has reliability ever been a problem?  How important is fault-
tolerance to the business unit?  Has the number of terminals concurrently
supported by the host ever presented a limiting factor?  Are there new features
or functions which users would like added to the system but which have been
difficult or impossible to incorporate into the current system?  Has there been
a problem interfacing with outside systems?

Depending on the answers to these questions, a distributed system may or
may not be of advantage to the department.  For instance, if the department
has difficulty interfacing with a new corporate SQL server, is running
mission-critical apps that can never be allowed to fail for more than a few
minutes without direct fiscal repercussions, and the current host has few
expansion options to allow it to support new users, resources, and
functionality, then a distributed system could be introduced to solve many of
these problems.  On the other hand, if the nature of the work is primarily text-
based data entry screens, a backup host has already been arranged through an
affordable third-party vendor, data interchange with other systems can be
processed handily with a handful of perl scripts, and users are content with the
current feature set and response time, then maybe a better alternative would be
to upgrade the current host with more RAM, secondary storage, and
terminals.

2) Upgrade options
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Before buying (or certainly developing) any new system, at least cursory
attention should be given to opportunities for expanding existing system
investments.  If the current host is proving to be a bottleneck due to a heavily
utilized CPU, consider whether additional (or more powerful) processors can
be installed into the main box.  Likewise, if frequent thrashing occurs due to
overrun cache buffers, explore the availability of RAM upgrades.  If the
impetus to move toward a distributed solution is to gain additional client
stations, check whether new terminal modules can be added to permit
multiplexing of additional terminals, especially across remote links.  If
software connectivity is a driving issue, contact vendors to see if a gateway is
available to convert data to a standard interchange format.

3) Cost of porting software applications
This is a step I learned the hard way: porting applications is never as easy

as expected, and every day spent re-coding an application that was already
working (until you decided to move it to a new platform) is money essentially
thrown away unless the port results in measurable gains in profitability (the
only benchmark most managers and bean-counters are interested in—
promised gains in productivity and efficiency can be surprising ephemeral and
difficult to verify).  Although it would be hard to arrive at a fixed figure, I
estimate the cost of porting an application between significantly different
platforms (such as COBOL to C++, or one multi-user host to distributed
servers) to be at least a third the cost of developing the app in the first place—
sometimes considerably more, because in its own way porting can be more
difficult than rebuilding from scratch, especially when crossing paradigms.

4) Training and empowerment
Training is one of my least-favorite “hidden costs,” because it is one I seem

incapable of remembering when doing my own migration budgets. 
Technologists look at new WYSIWYG GUIs and graphical front-ends like
Access 97 and immediately think how much friendlier and easier to use they
are than green or amber 80-col CRTs.  However, from the perspective of many
users, it’s just so many commands to re-learn.  Figure a minimum of 20 to 60
hours of re-training time per employee, just to get them up to speed at the
same level of competancy as they had on the old system—again, money in the
furnace.

Graphical operating systems also tend to have many more ways for users to
get themselves into trouble.  The old DASI terminals I used to support almost
never needed adjustment because they only had a few CMOS configuration
screens and you needed a password to get into those.  Not so Windows95! 
Every user wants to click that “Start” button and see “where they want to go
today”—which is often not where you wanted them to go.  Just something to
think about now, because you’ll certainly be reminiscing about it in the future
when every user discovers the joy of visiting the Dilbert Zone when they
should be entering monthly sales tallies.
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5) Future expansion plans
I believe that this is often one of the best reasons to migrate to a distributed

system, yet it is one of the least-often put forth on budget justification because
it lacks the sense of immediate gratification.  The fact is, information system
technology is advancing so quickly that managers intuitively know that they
can’t afford to remain stuck with obsolete technology and communications
structures forever—eventually they’ll need to connect to a modern system
which just refuses to talk EBCDIC, or add a custom application which can’t
be compiled under CTSS.  Managers know this.  They also know that part of
playing the “technology game” is sometimes blowing some money just to stay
dealed in, because if you ever fold just to save some short-term dollars, you’re
forever cut out of future winnings.  Up to a point, staying current is itself an
end worth pursuing.

That’s where expansion plans come in.  Even if you are running fine today,
what will your needs be tomorrow?  Classic host-terminal systems are
notoriously cranky about expansion, especially when users start demanding
bizarre features like gaining access to raw data so they can create their own
Excel crosstabs and bar charts.  If your current system is less than open about
communicating with outside systems, accepting third-party extensions, or
dispersing processor and storage loads across multiple systems, then it might
be worth migrating just on the likely bet that someday soon you’ll be needing
those features, even if today you don’t.

Reasons to take before your resident bean-counter include the following (if
the cost of migration is too big to sneak into a weekly expense account under a
description like “renew subscriptions to trade journals ... $5,000,000”):

Scalability: describe the massive expansion you’ll need to undertake when
next year’s revenues go through the roof and the company has to ramp up
production and services.  Nobody is willing to nay-say a prediction like that or
they’ll look like a poor team player.

Cost Savings: show how much money you’ll be able to save by sharing
expensive resources like color laser printers between dozens of users (you can
fail to mention that any laser printers at all will be added expenses, since
everyone currently crowds around the two giant line printers in the mainframe
room).

Actually, those are the only reasons I’d mention.  Most time-sharing
systems already appear to be concurrent, so that would look like a dead end,
and the potential performance gains from a genuinely parallel solution would
only suggest that current employees are spending time dawdling between
screen updates—time when they needn’t be paid.  Likewise, if you went on
about the increased fault tolerance of distributed systems, you’d only be
suggesting that your current disaster-recovery plan is inadequate—and that
would be your fault as system administrator.  Finally, concepts like openness
and transparency are simply too obtuse for the average non-technical person to
grasp.

In conclusion, never commit a department or business unit of any size to
migrate to a new platform merely because news magazines promote a new
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bandwagon (or because a question in a textbook prompts you to).  Distributed
systems represent a powerful and flexible new paradigm of information system
design, but they are not necessarily appropriate for every situation, and the
benefits they provide do not always justify the cost and complexity of a
departmental migration.  On the other hand, if you perceive that your legacy
system will one day become a corporate burden rather than a competitive
advantage, starting the move now to a distributed system will give you the
flexibility meet a variety of future computational demands.  In short,
competent department directors should approach new system paradigms with
the same envious-but-critical gaze as a general contractor eyeing a shiny new
Ford F-350 when he’s got a rusty but otherwise perfectly servicable S-10 in
the garage.

1.23 Discuss some of the
consequences that
might arise when one
computer in a
distributed system fails
and the rest continue
to run:

(i) if the failed
computer is a
workstation;

(ii) if the failed
computer is a file
server.

If a workstation fails in a distributed environment, you’ve got one user
who’s likely in a foul mood but a whole department full of peers who continue
to happily process away.  In fact, unless the workstation in question managed
some shared resource (such as providing the physical link between the
network and a popular office printer, or locally storing a spreadsheet file) the
rest of the stations should be able to chug along without even noticing their
comrade’s plight.

(Two minor exceptions: if the operating system allowed processor sharing
between nodes, as built into NEXTstep for instance, then other users might
notice a slight slowdown of their systems; on the other hand, if the
workstation crashed because the user was constantly downloading large image
files from the naughtier corners of the internet, they might actually experience
a surge of released network bandwidth.)

However, if the failed computer is a file server, then every user on the
system could experience difficulties, depending on the degree of fault-
tolerance that was implemented.  If the resources managed by the server were
replicated across multiple servers, then users could continue working, albeit
more slowly, from the reduced server pool (cf 1.18).  In fact, if the system was
designed with a high degree of transparency, users might not even notice the
fault.

(An exception: since the failed computer was specifically identified as a
file server, it is likely that one or more users could experience loss of any
changes to open files since the last replicated update.  That could represent
anywhere from ten minutes’ to a week’s worth of lost work.  Also, any
blocking transactions which depend on the server would probably be forced
into an indeterminate state and trigger rollbacks, which would result in a bit
more lost work—but typically not very much.)

1.24 A student laboratory
contains a number of
networked
workstations for use by
various groups of
students.  Any
particular student

Having taught in a variety of networked computer labs, I’ve got very
specific ideas on how to deal with this.  In fact, one such lab of Macintosh LC
III computers had exactly 80MB of internal storage in each unit, and another
lab of Apple IIgs computers had floppy drives but no hard disks.
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comes to the
laboratory from time to
time and does not
necessarily always
expect to use the same
workstation.  How do
you suggest that the
students’ files should
be stored:

(i) if the workstation
has a small hard disk
(for example 80MB);

(ii) if the workstation
has a floppy disk drive,
but no hard disk?

First of all, I’m a strong believer in server-based storage for any student lab
for several reasons.  First (and second, and third), students will “lose” floppy

disks!  They will be forgotten in lockers, at home, bent in textbooks, folded in
notebooks, crammed into pockets then dirtied on playing fields, run over with
bicycles, used as frisbees (a very popular sport, as the sharp corners of 5.25”
disks can actually be lodged into drop-ceiling tiles), etc, etc, etc.  In short, if
you expect students to bring their work in each day on floppy disks, expect
fully 50% of those disks to be unusable by the end of the project—leaving you
at a loss at how to grade the students, since they probably did do at least some
of the work, but you have no way to retrieve the data.

The solution is easy: don’t let any files leave the classroom!  Some teachers
compromise by keeping locked disk boxes in the classroom so that students
may simply leave their disks with the teacher, but I’ve found that to be
inadequate in most cases (and an unnecessary strain on the teacher to be
accountable for such a collection of disks).  I much prefer to keep everything
on the file server.  File servers are relatively cheap when compared to the total
cost of outfitting a lab—it’s hard to equip a 25-station lab with hardware,
software, and peripherals for less than $40,000, and a decent file-and-print
server can be added for only $2,000 to $5,000.  Moreover, since a single
server can easily support a half-dozen labs without strain, the system would be
a good investment for the entire school.

Besides guaranteeing availability of student work, there are several other
advantages to a server-based solution.  For instance, it makes it much easier to
grade projects, since the teacher can simply sit at his or her desk and sift
through the various class directories.  Also, the instructor/network manager
can include the student files in automated backups, further reducing students’
excuses for not having their work done.  On a fully networked campus (mine
was), this also allows students to access their individual files from stations
outside the classroom, such as a general-access lab in the school media center.

However, there are a few problems associated with server-based storage. 
The biggest problem I had was with students accessing other students’ work
and copying their projects in whole or part.  That can be solved with user-
based security methods (I tried group-based security tied to individual classes,
but they just copied and deleted their classmates’ work instead).  However, the
administrative overhead involved in configuring and managing individual
security clearances for 120 students each semester can get to be a bit of a
headache.  My solution was to have a student assistant generate and configure
the individual student accounts and then lump them all into a single group to
provide general trustee rights, leaving each of them a single private login
directory with a storage limit of 1MB or so.  Issuing passwords can also be a
pain, but that pain can be eased by starting each password as the student’s
first name, then configuring their account to require a new password (of 5+
characters) every 3 logins or so.  Many will forget their own passwords, but
that’s easily overriden from an administrative station at the teacher’s desk.

You’ll notice that in all this discussion I haven’t distinguished between
stations that are equipped with hard disks and those without.  That’s because,
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as far as data file storage is concerned, I would (and did) treat them the same,
for the same reasons.  The only advantage of hard drives on student stations is
it allows a graphical operating system and a handful of application programs
to be stored locally, which speeds boot time and application response time
considerably.  However, I would feel perfectly justified in totally—totally—
locking the local hard drives of every student station so that they couldn’t so
much as save the time of day without generating an error message.

Fortunately, there are a variety of commercial security packages on the
market to allow you to do just that, most priced very attractively for academia.
 Note that on Intel machines you’ll need to configure the CMOS to use a C:,A:
boot sequence instead of the default order, and then you’ll need to password-
protect the CMOS to keep enterprising students from simply booting off their
own DOS disk and wrecking havok with your system.  Even then, I’ve had
clever 12-year-olds bring in screwdrivers to open the CPU case, remove the
battery for a few minutes until the CMOS resets, and then hack themselves in
just as pretty as you please.  Those kids are typically the ones I chose as my
teaching assistants, to keep them out of trouble as much as anything else.

2.5 Distinguish between
flat and hierarchic
naming schemes. 
Under what
circumstances is each
most useful?

Flat naming schemes keep all of the identifiers from a particular
namespace in a single logical set; there is no perceived nesting of objects
within other objects, and any ordering and filtering is generally performed
only at the reporting level.  As a result, duplicate identifiers are typically not
allowed (or are permitted only for items of differing types), and there is a
relatively low useful boundary on the size of the table.  The biggest advantages
of flat naming conventions is that they are very easy to implement and are
extremely fast for small name spaces.  The biggest problem is that they don’t
scale well when table sizes grow much beyond a hundred entries or so.

Hierarchic schemes, on the other hand, encourage a tiering or stratification
of leaf objects within group objects.  This allows similar items to be grouped
logically with other items possessing similar attributes.  It also permits
duplicate naming of leaf nodes within different groups, since local context
sufficies to uniquely identify each duplicate.  The biggest advantage of
hierarchic naming conventions is that they are typically scalable, with very
little modification or extra effort, to thousands or hundreds of thousands of
identifiers.  The only real problem with hierarchic structures is that they
require extra effort on the part of the original system designer to develop. 
They can also be less efficient than flat name spaces for extremely small name
spaces.

To be honest, it’s getting harder and harder to find examples of flat name
spaces.  I first started using MS-DOS at version 2.11, which I believe had just
begun to support directories and subdirectories.  I did use Apple DOS 3.3 for a
while, which supported only a single flat directory, but as soon as the first
Apple hard drive came out, ProDOS came with it, supporting a contextual
hierarchy of directories.  It’s worth noting that the driving force behind both
transitions occured when hard drives became commercially viable.  Flat name
spaces worked just fine on floppy disks, which rarely held more than a
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hundred files.  However, hard drives promising storage of thousands of files
demanded a more structured approach to maintain response time and provide
a convient organizational metaphor to users.  (Happily for some, NetWare 3.x
remains a champion of flat name spaces to store users, printers and servers,
and looks like it plans to live forever in spite of it’s deeply hierarchic 4.1
cousin.)

It’s important to distinguish between the name space as experienced by the
user and the underlying data structures used by the programmers.  Both flat
and hierarchic name spaces can be easily implemented in a B-tree for fast
searching and updating.  For that matter, a hierarchic structure could be
implemented in a flat data structure if anyone felt like doing so.  Also, some
nominally hierarchic name spaces aren’t as structured as they could be.  For
instance, the “.com”, “.edu”, and “.org” structure of the internet DNS service
remains a remarkably flat organism.  The number of “.com” domains alone is
well into the hundreds of thousands, which can be treated as a bloated flat
table which happens to fall within a specific hierarchical group.

The choice of name space structures is usually up to the system designer,
although more and more customers are becoming saavy enough to request
easily-scaled and -managed hierarchies.  On a recent web-based vacancy
database I designed for the Osceola County school system, for instance, I
choose to use a flat name space to hold the table of school entities.  I based
that decision on the small number of schools involved (26), the projected
growth rate (1 school per year), and the small amount they were paying me. 
In contrast, had I provided the same system to the Orange County school
district, I probably would have taken the trouble to make the name space
hierarchic in recognition of their much larger system (130+ schools).

2.9 Explain the difference
between monolithic
and open operating
systems.

Monolithic operating systems were built around the assumption that the
mainframe was to be the primary, and often sole provider of computational
power for the business unit or academic department.  Since all computing
requests went to the mainframe, it made sense to design the mainframe
operating system to perform every function.  For the sake of security,
efficiency, and error-proofing most of these functions were bundled into the
system kernal where they could not be inadvertantly modified by devious or
bungling programmers.  This model worked for a time, and it was a good
time, until...

...the dawn of personal computing, when a couple of hackers named in a
garage brought a useful degree of power to the desktop, and a bright young
programmer with the soul of a lawyer sold a watered-down operating system
to the boys at Big Blue.  Henceforth, a trend emerged which steadily reduced
the stream of requests flowing into the glass cages of corporate IS, and instead
users began finding their own solutions to computational problems.  Suddenly,
or so it now seems, the workflow model went from “user à mainframe à
user” to “user [ à mainframe ] à user”, with the host sometimes being cut
out of the loop completely.
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This brought a change in the design of host operating systems.  No longer
could system designers assume that they would be sole source for specific
functions or applications.  Even services traditionally buried deep into OS
kernals, such as file access and name resolution, could now be provided off-
host, and with greater accessibility and fault-tolerance to boot.  Customers
also began to insist on greater customizability and flexibility than could safely
be delivered from within a kernal.

As a result, kernals took their cue from their old friend CPUs and “shrunk
their die size.”  By removing everything not directly related to basic resource
management (memory, processes, basic communication and peripheral calls)
to outside the kernal, system integrators became free to selectively install just
those services they needed, and configure them as they chose.  Services
outside the kernel could also be designed in a much more open manner,
permitting levels of inter-system communication and collaboration never
before available.

It was that ability to share service information between hosts which really
made distributed systems viable.  When key services remain locked inside a
kernal, it is very difficult to implement such key distributed features as
resource sharing, openness, and transparency.  On the other hand, services
implemented outside a kernal can all be designed to support distributed
systems by incorporating the rudiments of distributed system design.

Unix is an oft-cited example of a monolithic OS, since it packs a large
degree of the system’s total functionality into its megabyte kernal.  Recent
outgrowths of the Unix family line, such as Mach, have retained many of the
classic Unix features but compartmentalized them and moved them outside of
the kernal to create a much more open environment.

2.11 Discuss the efficiency
of use of the processor
and memory resources
in a distributed system
based on a simple
workstation-server
architecture.  What
techniques can be
used to improve it?

In the simplest workstation-server distributed system there will almost
always be instances of inefficiently applied resources.  In particular, key
physical resources such as processing power, RAM, hard drive space, and
network bandwidth tend to be non-uniformly distributed during periods of
high load.  That occurs because these resources are necessarily physically tied
to individual nodes (workstations) and servers.  Although system designers
can provide mechanisms to share access to these resources across a network,
such access will always be constrained by the latency of the network
connection and will be almost certainly slower than a direct physical bus
connection.

For instance, an engineering team may have five workstations on their lab
floor.  Three of those stations may be in use by rendering or circuit-routing
software, which involve very high levels of computational power and are well-
suited to multiprocessing.  One of the other systems could be in use by a
technical writer producing flowcharts of the next project phase (relatively low
computational load) and the other could be displaying an idle-mode screen
saver while its operator carries on a telephone conversation.  As a result, three
of the stations will be maxed-out on computing power and leave their users in
an effective blocking state until they have completed their tasks.  Meanwhile,
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two other high-power workstations will be sitting by running at perhaps 5%
and 1% of their potential utilization.  This represents an inefficient use of
resources because the collected workstations are running at less than 70%
utilization in spite of the fact that three operators are in blocking states.

The most likely design improvement to deal with such situations is to allow
each unit to share a portion of its processing power—ie, CPU and RAM—
with other stations, so long as such sharing does not inordinately crimp its
own processes.  This is analogous to the peer-to-peer file sharing which has
existed on Macintosh computers for about seven years, and which has recently
appeared in Windows 95.  In each case, the user can configure how much of
his or her hard disk to share across a network, and with whom.  The
NextSTEP operating system, based on the Mach kernel, takes this approach
one step further by allowing the user to specify whether he or she wishes to
share the station’s processing power as well, with whom, and how much of a
slowdown the user is willing to tolerate.

By incorporating such technologies into a distributed system, processing
bottlenecks are reduced by allowing CPU-intensive processes to take
advantage of parallel processing opportunities on other available processors—
in effect, emulating a processor pool architecture “on the honor system.”  In
the example provided above, the three CPU-intensive tasks could have been
completed up to 40% faster without unduly inconveniencing the other users. 
This not only provides a faster, more responsive, and more productive
environment for the users, but also saves money by allowing existing capital
to be utilized fully before requiring additional upgrades or stations.

2.12 Give reasons for and
against equipping
workstations with local
disks.

There are two main kinds of local disks which may installed on
workstations, each of which provides its own set of advantages and
complications.  The earliest such decisions dealt with the inclusion of floppy
drives (removable media), which were the only kind of local disk drive
affordable to many users.  More recently, a new round of questions has arisen
about the pros and cons of local hard drives (fixed media).

Floppy drives are the oldest example of random-access digital local storage
(I think), and still remain popular and surprisingly unchanged in spite of
massive research and product development in the storage industry.  The main
advantages of floppy disks are their portable nature (leading to the first
affordable local-area networks, “sneakernet”), their comparative cheap price
(making backups affordable and easily accessible for most user-generated
documents), and the removable-media aspect (which allows new software to
be easily distributed, sold, and installed via diskette).  All of these reasons
appeal immensely to consumers and individual users, who like the ability to
share files, load new programs, and backup valuable documents.  Network
administers appreciate a fourth quality of floppy disks, which is that it is very
convenient to boot a system from a “clean” floppy diskette while
troubleshooting, especially when data on the fixed drive is suspected of
corruption.
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However, it is those same network managers who express the biggest
concerns about local floppy drives.  Namely, the ability to share files implies
the ability to illegally copy software off the system or install new applications
which aren’t licensed or even introduce conflicts in key production
applications.  Furthermore, the days of “free computer love” are over; every
user must practice safe computing or risk exposure to one of the thousands of
viruses circulating on various platforms.  Networks are particularly susceptible
to such contagions, as an entire LAN can be brought down by a single infected
floppy data disk.  Finally, security-conscious companies (or schools) may find
that local floppy drives can often be used to circumvent a number of surface
security levels, at least on the client side.

There are different issues involved in adding or removing local hard
drives.  Once upon a time, in the early days of computing, there were things
called “dumb terminals” which featured little or no local storage—not even
RAM beyond that required for a video display and small I/O buffers.  These
terminals lived and died at the whim of their mainframe host, which stored
everything deep within its centralized banks.  This could be described as the
“Epoch of IBM,” as their mainframes and operating systems played central
roles in many terminal-host environments.  In time, that computing model
was replaced by the current environment of powerful PC and workstation
clients storing much of their own data, and only sending requests to a central
server when they need something outside their local cache.  This time may
best be described as the “Microsoft Era,” since their operating systems were
dominant factors in devolving power out to the desktop.

Now it seems that the pendulum is swinging back the other way, and a
return to “thin clients” may be emerging.  The principal proponent of this
model, Larry Ellison of Oracle, hopes to usher in a new “Ellison Eon” in
which the prototypical client will be a diskless “NC” (network computer). 
The NC, in turn, will keep all of its applications (written in Sun’s Java
language, supposedly) on a central server (which could well be distributed,
one supposes).  So surprisingly, after almost two decades of adding resources
and peripherals to the desktop client, we’re once again contemplating their
removal.  This time around, as before, the argument is that network
bandwidth has again caught up with application needs and is once more
capable of conveying OS and application code to the client as well as data. 
Well, almost—it turns out that Microsoft Office 97 actually takes a few
minutes to launch even over today’s high speed networks, so it was decided to
re-code every application in the minimalist Java language, which will in some
mystical manner optimize the bloated code that has become the norm for
commercial productivity software.  Without removing any features, of course.
 Oh, and it will also turn the trick of making a web browser seem like a
perfectly natural environment in which to modify spreadsheet files and design
3-D circuit schematics.

The fruit of all of this technical wizardry (or is it pedagogery?) is that
applications will be easier to upgrade, since only one copy will be stored on
the central server, and that client workstations will be cheaper, not only for
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the raw physical unit but also the extended TCO (Total Cost of Ownership). 
This is the sort of thing that makes accountants and network managers very
happy, because it means that they have to do less work.  It remains to be seen
what the user response will be (which will primarily depend on what the
network response will be, which has yet to be proven in field studies).

I personally suspect, however, that it will be games like “Doom” that prove
to be the real killer-app of the NC phenomenon—and I do mean “killer” app,
in that it will kill the idea of the NC for thousands of users.  Why?  Because
with applications being stored on the server, it will be up to LAN administers
to decide what applications they’re going to allow.  And when the network
bandwidth becomes scarce (and it always does), it’ll be games like “Doom”
which are the first deleted from the system—if they’re ever allowed there in
the first place.  And that’s when the users will stage an anti-NC revolt,
because once they get used to the personal conveniences of local storage—like
texture-mapped games to play during lunch and “brainstorming” sessions
(read “deathmatch”), they won’t want to give them up.  And as users, they’ll
be in the best position of anyone to sabotage the whole NC movement, by
constantly complaining about access speeds, resource availability, etc.

The funny thing about technology is that it’s stuck in forward gear—you
can’t throw it into reverse, and that’s why I think local storage—at least as far
as fixed media is concerned—is here to stay.

2.20 Distinguish between
buffering and caching. Buffering is temporarily storing data in RAM (or some high-speed

medium) for quick and convenient access.  Caching is a special instance of
buffering in which the data being buffered is retained specifically because
subsequent read or write operations are expected to be performed on that
particular data block.

Besides caching, buffering is used for a variety of tasks.  In the most
general sense, virtually all data and code held in RAM can be considered to be
buffered—in fact, in the C language, all memory blocks, arrays, and structures
are explicitly referred to as buffers.  Input and output buffers are frequently
applied to concatenate many small I/O operations into one large block
operation to avoid overhead costs (ie, disk seek time, network latency, etc). 
I/O buffers also allow different processes and devices to share data at
electronic speeds, even when they process that data at different rates (ie, a fast
CPU sending 25 pages of data to a printer buffer, which will slowly feed it to a
4ppm print engine).  Finally, buffers are used as general-purpose holding
areas for data which is not meant to be processed but merely passed on (for
instance, ethernet NICs have small on-board buffers to hold incoming packets
just long enough to run a checksum and determine if the packet is to be passed
to the host CPU, routed to another network, or dumped).

Caches are special-purpose buffers which hold local copies of remote data
to avoid communication costs (which may range anywhere from a
microsecond load operation, in the case of a processor cache, to a 10-second
internetwork server request in the case of a distributed database).  Data is held
in the cache for as long as feasible in the hope that future requests may be
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satisfied from in-cache rather than necessitating the comparatively expensive
option of retrieving a fresh copy from the remote source.  So-called “write
caches” are actually little different from the output buffers mentioned above.

2.24 Why are distributed
systems intrinsically
less secure than
centralized computer
systems?

There are many reasons why distributed systems are much more difficult to
secure than centralized systems.  The physically distributed nature of the
systems provides a variety of opportunities for unauthorized access to data
channels.  Also, the software design requirements of a distributed system leave
room for digital forgeries aplenty.

The network provides the single biggest obstacle to fully securing
distributed systems.  In order to achieve many of the desired benefits of
distributing storage and workload—concurrency, transparency, fault
tolerance, scalability, etc—data must pass routinely pass across a variety of
circuits, routers, and so forth.  In fact, in the case of network protocols such as
token ring and ethernet, data is constantly being broadcast to and through
computers which are never intended to read it.  In those cases, all that keeps
unauthorized users from accessing the data directly is the configuration of the
network interface.  Even if a potential snooper does not have access to a
network node, or the network does not rely on broadcast or peer-to-peer
routing, mere physical access to the data cables can allow an interloper to
copy, analyze, or even modify packets as they go by.

There are a variety of ways to protect a distributed system at the network
level.  One of the most basic is to limit access to the physical network to
whatever degree is possible.  In the event that physical security cannot be
assured—as is the case with any system running over the connected internet,
for instance—data encryption is always a viable option.  By using one of the
many available RSA or PGP encryption algorithms, data may be exchanged
across the most public networks with reasonable confidence that it cannot be
read, and that any attempts at modification would result in checksum errors
(note that data packets could still be blocked, but that’s more of a fault-
tolerance issue than security).  One of the earliest examples of encryption
being used to protect a distributed system (of sorts) being promogulated across
public communication channels is the ENIGMA system used by Nazi
Germany in World War II.

Another large issue that security-conscious distributed systems designers
must face is that of user and resource authentication.  An integral concept in
distributed systems is having servers manage resources, clients passing
requests, and making sure the responses get back to the same client who
requested the service.  That whole system requires a reliable naming system
which makes sure clients and servers are correctly and consistently identified.
 Without making a serious effort to authenticate that both clients and servers
are who they say they are, a hacker could falsely identify himself as a client
and make requests of services to which he should not have access. 
Alternately, he could position himself to receive server replies properly
addressed to other legitimate clients.  Finally, he could falsely identify himself
as a server and accept requests for services he cannot or should not provide.
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Again, the best solution to this problem is by employing a system such as
Kerberos to authenticate that all participants in a client-server conversation
are exactly who they claim to be.  Indeed, thanks to the bulging prospect of e-
commerce on the world-wide web, the internet has seen a deluge of new
digital-certificate technologies emerge over the past two years.

3.2 What is the task of an
Internet router?  What
tables must it
maintain?

A router is responsible for passing packets between networks.  Internet
routers in particular are used to route IP traffic (although general-purpose
routers can be configured to route a variety of protocols at once, such as IPX
and AppleTalk).  Routers are needed when a process on a computer on one
network needs to communicate with a process on another computer on another
network.  The first process sends its message by passing it down through the
layers of its protocol stack until it reaches the network layer.  At that point the
NIC attached to the first computer sends out the message across the physical
network (using a broadcast ethernet message, or by grabbing the next
available token, or whatever).  Neither the process nor the NIC, however, are
responsible for knowing whether the recipient computer is on the same
network or a different one; that’s the job of the router.

The router, being connected to the source network, receives the packet as it
is being circulated through the network via whatever protocol reigns there. 
The router then analyzes the packet header and determines whether the target
computer is on the original network or another network.  If the packet is
targeted for a computer on the source network, the router need do nothing and
simply ignores the packet, assuming that the proper recipient will pick it up in
due course.  On the other hand, if the header bytes suggest that the recipient
will not be found on the local network, the router must decide where to send
the packet so that it will eventually find its way to the correct addressee.

To decide where to send the packet, the router must consult internal tables
containing the addresses of other routers with which it can communicate, and
information about the network to which those routers are attached.  Hopefully
the router will already know of at least one route between the source network
and the target network.  However, due to the massive size of the connected
internet and to its dynamic nature (in which new LANs and WANs are added
every day), it is predictable that the router will not always possess
foreknowledge of the target.

There are two solutions I can think of to deal with this situation, and I’m
not clear on which is actually employed by standard internet routers.  First,
the source router could simply make a “best guess” and send the message on
to another router, hoping that the router at the next “hop” will know about the
target network, or perhaps the hop after that.  A better solution may be for the
router to send a special routing request packet off to a bunch of different
routers asking if any of them know where to find the recipient network.  If any
of them know, they could reply with a route to the target.   If they don’t know,
then they could in turn pass on similar requests to other routers they know
about.  This would ultimately provide a “breadth-first-search” of the entire
Internet until the target was found.  To prevent a surplus of unnecessary
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routing packets, some sort of “time-to-life” value could be encoded, perhaps
informing every fifth router along the chain to directly query the source router
and ask if the search had yet been concluded or if it should be continued.

Finally, the router attached to the recipient network needs to maintain a
table of the addresses (IP addresses, in this case, or more likely just the subnet
addresses) of the client nodes connected to its network.

3.3 What is the task of an
Ethernet bridge?  What
tables must it
maintain?

Bridges are like routers except that they only work with a single protocol. 
Ethernet bridges connect two or more ethernet networks.  Ethernet bridges
come in two main flavors: dumb and smart (AKA cheap and expensive, AKA
chatty and efficient).  The simplest sort are little more than repeating hubs
and simply send all traffic from one network to every other network the bridge
talks to.  This results in an awful lot of needless traffic and henceforth
collisions, although it does allow nodes on different networks to communicate.

A better solution, but one requiring more processing on the part of the
bridge (and therefore RAM and circuitry, both of which cost money), is for the
bridge to maintain a table containing the ethernet addresses of every computer
on each network to which it is attached.  That way it can choose to only bridge
packets which are actually directed to nodes on different networks.

One complication would be the instance in which one bridge was used to
connect LANs A and B, and another bridge connected LANs B and C.  For a
message to successfully pass from LAN A to C, one of these methods must be
implemented: either each bridge must maintain comprehensive tables of every
ethernet address of every network to which it is attached AND every LAN to
which those networks may be bridged (and so on infinitum); or the bridge can
simply broadcast packets addressed to unknown nodes to every attached
network, figuring that some bridge will recognize them somewhere.  (Or the
bridge could try to interrogate other bridges to ask if they recognize the
address, but that’s really more of a routing function and beyond the demesnes
of mere bridges, although the line between routers, switches, and bridges has
grown blurred in recent years).

3.4 Describe the work done
by the software in each
protocol layer when the
ISO Reference Model is
implemented over an
Ethernet.

The first five layers will neither know nor care whether the local network
is ethernet or not.  The topmost application layer provides protocols
customized for specific applications and services.  The ones I know best are all
from the internet: FTP, telnet, SMPT/POP, and presumably http.  I don’t
know what would constitute valid examples of application-layer protocols in
Netware or Macintosh environments, but I suspect that NDS would be up
there somewhere.

The presentation layer is charged with translating data into a portable
format using standards such as XDR and Courier.  I assume that this would
translate EBCDIC into ASCII if necessary, for instance, but I don’t know
whether other forms of data conversion like uuencoding are carried out there
or, more likely, outside of any protocol and manually performed by user
processes.  At least, I’ve always had to do my own uudecoding in the
programs I write, so I’m not sure what the presentation layer was doing for
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me.  Likewise, this layer is nominally responsible for protocol-based
encryption, but every implementation of encryption I’ve dealt with has been
performed by user applications, so I’m not sure sure how this relates to
modern office environments.

The session layer establishes and maintains connections between processes.
 This is an extremely important role in internet operations, which rely almost
exclusively on the connection-oriented TCP protocol.  The session layer in the
computer of the source process communicates with the computer of the target
process by passing a message down through the transport, network, data link
and physical layers, across the network, then back up through the analogous
protocol layers on the target computer.

Once a session has been established, the transport layer can send the
message (or stream) from the source process to the recipient process. 
Different transport protocols subdivide messages differently, but all are
responsible for segmenting long messages into chunks (ie TCP packets) of
either fixed or variable length, tagging them with sequence identifiers of some
sort, then passing them on to the network layer.  The transport layer on the
receiving end is similarly responsible for reconstituting the message from its
component parts and in the correct order.  Some transport protocols require
acknowledgements of each chunk while others depend on resubmission
requests from the recipient.

The network layer is first charged with determining a path from the source
computer to the target computer, possibly across networks or internetworks. 
Note that for stacks based on connection-oriented transport protocols, the
network layer is first called upon to determine a route by the session layer; by
the time the first chunk of the content-message is ready to be passed, a route
has already been established and the network layer shouldn’t need to do any
further route-detection.  All that’s left for it to do is keep passing message
chunks (or stream packets) down to the data link layer with route information,
usually in the form of a datagram with sender and recipient addresses encoded
in the header.

The data link and physical layers are the only layers that have any interest
in ethernet per se.  The data link layer is duty-bound to accept each chunk (ie,
data) from the network layer and pass it (ie, link) to the physical layer (hence
the name, data link).  Before doing this, the data link layer must determine the
ethernet address of the receiving computer (at least for the first “hop,” which
is often to the nearest router).

Finally, the physical layer is comprised of the physical cables which stretch
between nodes, servers, hubs and routers.  In ethernet, this used to be almost
exclusively “thicknet” or “thinnet” co-ax with locking BNC connectors, which
lent themselves readily to bus or ring topology.  More recently, CAT-3 to -5
UTP (unshielded twisted pair) and 10BASE-T has become the norm, with
most new installations adopting so-called “star” or “homerun” topologies.
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3.11 How can we be sure
that no two computers
in the Internet have the
same addresses?

First of all, there are many pairs of computers on the Internet with
duplicate addresses; I wouldn’t be surprised to find several thousand duplicate
IP values on any given day.  This is partly due to rare but predictable errors on
the part of otherwise careful network administrators, but more often due to the
bungling of well-meaning but ignorant PC users who feel compelled to fiddle
with their computer configurations just to see what happens (typically in a
misguided attempt at self-instruction, which is usually a good thing but not
when it comes to bringing a network down). Fortunately, having duplicate IP
addresses on your network generally shouldn’t affect you, unless (1) your
address is one of the duplicated values, or (2) you rely on a resource such as a
server or router which holds a duplicate address.

Usually I don’t worry about duplicate addresses, because if it ever happens
I usually get a phone call pretty soon from one of the affected users and I can
resolve the problem at that point.  I haven’t tried this, but I imagine that you
could ping an address and check the replies that come back to look for
duplicates.  Also, if I knew more about programming routers, I’ll bet you
could query the router directly for a list of all the IP addresses mapped to
ethernet addresses on the local segments.  At that point all you’d have to do is
figure out which user maps to which ethernet address, which the part I usually
have trouble with.  I’m not sure if Novell lets you search user information
with NDIR based on ethernet address or not, but I do know that you have to
buy a third-party network management tool to pull that trick on a Mac
network (I just did for $8,000).  (Of course, under Unix you could probably
just finger an IP address to get the contact info for whatever yutz has been
playing with ifconfig, but I don’t manage Unix networks.)

One way to circumvent this problem is to use DHCP or BootP servers to
automatically assign dynamic IP addresses to clients.  Besides guaranteeing
that no two users will be issued the same address (at least not at the same
time), this also allows a network manager to leverage a small number of IP
addresses—say, a single class “C” license—into a satisfactory connection
serving several hundred users (assuming that not everyone decided to check
ESPNet at the same time).  Another way to eliminate duplicate IP addresses is
to not issue them at all, and instead use a gateway (like NetwareIP, MacIP, or
one of the many SOCKS implementations) to route an entire LAN’s internet
traffic through a single IP host.

3.12 Explain the
relationship between
domain names and
Internet addresses (IP
addresses) in the
Internet.

A domain name is an alphanumeric label mapped to a particular IP address
for the convenience of weenie humans to whom tags like “163.193.177.64”
prove too cumbersome.  The mapping is one-to-many, meaning that a single
IP address can have a number of different domain names, but one domain
name can only point to a single IP address (this does not prevent server
clustering, as a request to the “home” server can easily be handed off to a
secondary server for load-balanced scalability).  Also, a single computer can
have more than one IP address, which has led to an entire new industry in
virtual hosting.
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Domain names are resolved by issuing calls to a DNS (Domain Name
Service) process.  Many networks simplify management by issuing “local”
domain names which are not distributed out to the internet.  Intranets in
particular enjoy complete freedom to issue as many domain names as they
want for internal use.  Internet-accessible domain names take time to be
replicated across the world’s many DNS servers, however—figure eight hours
before local changes are fully reflected worldwide.

Domain names are issued by the InterNIC registry service, and possibly by
several new commercial registries—the issue seems to be in flux at this
writing.  There were originally only a few types of addresses: .edu, .com, .net,
.gov, .org, and .mil covered most of the gamut.  With the internationalization
of the internet, however, domain names have been restructured to match the
geopolitical location of the host: names like .co.uk, .ac.jp, and .k12.fl.us now
proliferate.  Personally I think this is an unfortunate trend, because it
compromises a lot of the transparency that once made internet access so
ambiguous and fun (which country am I talking to right now?  I can’t tell!)

At one time most addresses were free, but now all commercial addresses
cost $50 per year with a 2-year minimum.  Academic addresses remain free,
fortunately.  I believe I read that the domain name “business.com” was
recently re-sold for a record-setting $100,000.  One of the earliest and rudest
ways people made money on the web was by registering dozens of likely
commercial names like “windows95.com” and then re-selling them to the
rightful trademark holders; I think that this practice has now been banned.

4.1 Compare sending a
message with sending
data over a stream.

The distinction between sending a message and sending data over a stream
can perhaps be compared to the difference between voice mail and a telephone
conversation.  With voice mail, a static message of fixed length is sent in one
complete body, and the recipient doesn’t hear the beginning of the message
until the sender has reached the ending and hung up.  A telephone
conversation, in contrast, allows the recipient to receive each “sound byte” as
it is issued, permitting recieving operations (like taking notes or doodling as
the case may be) to occur almost in parallel with the data transmission. 
Furthermore, the stream remains “open,” even during the dreaded seven-
minute lulls, until one party breaks the connection.

Unfortunately, that analogy breaks down in that a telephone conversation
is a two-way stream while BSD streams are one-way (although two may be
established to support bidirectional communication); analogies with e-mail vs.
chat have the same problem.  One could make a more accurate analogy
involving live television news reports versus recorded VHS tapes, but I think
the point’s been sufficiently made and the horse is quite dead.

In any case, streaming technologies are becoming quite “the thing” on the
internet.  Almost no one bothers posting .au sound files on the net anymore,
which require several minutes of silent downloading before the music starts
(at which point you have an unused internet connection while you listen to the
sound file play).  Instead, the multimedia world is moving to the new “.ra”
RealAudio files, which allow you to hear the sound as it is being streamed,
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thus providing a theoretical doubling of user productivity (assuming that
downloading sound files from The Simpsons can be considered productive...). 
Likewise with byte-served Acrobat files, RealVideo, etc, etc.

4.2 One way of managing
the conversion of data
types is for computers
always to convert data
into a standard form
before transmission. 
Explain why this may
be inefficient, and
describe an alternative.
 Which of the
alternatives should be
used?

Universally translating every message into a common data format is
inefficient for many reasons.  For one thing, the vast majority of
communication is already between similar computers, making most
conversions unnecessary; it would seem to make much more sense to have the
session and presentation layers collaborate to negotiate a common format
when a connection is first established.  In many cases that would at most
necessitate encoding 8-bit binary files into 7-bit text versions (using BinHex
and its kindred).

Furthermore, if a single “standard form” were adopted, it would almost
certainly be drawn from the lowest common denominator and feature such
infinitely-compatible but horrendously-inefficient methods as sending numeric
values as alphanumeric digits (ie, using a whole byte of information to store a
10-state digital value).  Besides wasting bandwidth by the bucketful, that adds
tremendously to pre- and post-processing time.

If a universal data format were to be adopted, I would recommend that it
include a type-descriptor signalling that the following packet utilized one of
the following four formats:
• A straightforward format optimized for simple binary and textual data in

which integers and floating point values are stored in a binary
representation and other information was passed in ASCII (possibly with
optional support for the new two-byte character sets), provided for easy and
fast communication over high-speed networks.

• A totally flattened format in which all data was passed as 7-bit text,
provided as a contingency-of-last-resort format should client-server
negotiation fail to find common ground elsewhere in the protocol.

• A lossless compressed format based on an algorithm comparable to LZW
(only without the licensing issues), provided for optimized transmission of
specific binary data over low-bandwidth connections.

• A lossy compressed format using something like wavelet or JPEG
compression for very fast transmission of content-uncritical binary data
over low-bandwidth connections (like real-time multimedia data).

4.9 Explain why a process
might need to have
several ports.

When dealing with interprocess communication, it is often convenient for a
single process to hold several ports.  Heavily loaded server processes can
maintain several “receiving” ports to expedite communication with multiple
clients.  Likewise, client processes which are communicating with several
servers concurrently might like to have multiple ports waiting for responses. 
Also, any one process might appear as a client to one computer and a server to
another, so it would vastly simply things if the process maintained separate
input and output ports.

I imagine that streamed services like telnet and FTP (when used over
TCP), in which an established connection might be held for hours at a time,
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would require a unique server port for each concurrent client connection
(suggesting hundreds of such ports for popular university servers).  I haven’t
configured a web, FTP, or POP server in a while, but I remember that they
asked the administrator to set the max number of “listen” ports, which I
imagine is for concurrent connections.  I also remember reading that modern
web browsers can attempt to make extra connections in order to recieve
multiple page elements (usually binary graphic files) in parallel.

4.22 Give a list of the main
design issues and
options for the design
of group
communication.

Group communication is a key tool in the design of distributed systems. 
Many key attributes of distributed systems such as fault tolerance, scalability,
concurrency, transparency, and resource sharing can be implemented most
efficiently using group communication (they can be implemented without
group communication, but with far more difficulty and message overhead). 
Typical uses for group communication include replicated services, multicast
queries, and multiple updates of redundant data.

In order to implement these operations, system designers must decide what
guarantees must be made about data communications.  For instance, if data
are to be replicated across many servers, the data at all servers must be
required to be at exactly the same state at all times, or else client read
operations will return unpredicatable results, which is rarely acceptable. 
Furthermore, in the case of multiple clients and multiple servers,
communications may or may not be required to be processed by every server
in the same order.  Solutions to these problems exist, but they vary in terms of
efficiency, reliability, and cost.

One of the most basic problems is guaranteeing that each member of a
receiving group receives every broadcast communication.  This is known as
atomicity, and is basically a plural version of the common “transaction”
operation.  Fully atomic communications are those which are known to have
been successfully received by every member of a group and can therefore be
trusted and acted upon.  Although fully atomic communications are feasible,
they are relatively expensive and therefore avoided unless strictly neccessary. 
Alternatives to atomic communication include reliable multicast, which
guarantees that at least one member of the group receives the communication,
and unreliable broadcast, which makes no guarantees whatsoever.

For some applications, even atomic communication is not enough, because
the order of communications can be as significant as their reliable
transmissions.  There are four basic kinds of ordering which can be applied:
unordered, totally ordered, causually ordered, and sync-ordered.  Total
ordering guarantees that messages will be processed in the same order by
every recipient, but does not make any claims about what that order will be. 
Causual ordering seeks to determine a happened-before relationship between
messages, and forces messages to be processed in the same sequence in which
they were created and/or sent.  Sync-ordering allows a series of messages to be
synchronized at specific benchmarks to maintain data integrity.  Unordered
message processing is a basic FIFO unprioritized queue.

For critical applications which require the maximum reliability of fully-
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ordered atomic broadcast, efficiency becomes an issue.  As seems to be the
rule in programming, the most easily coded solutions are usually the least
efficient.  Therefore, for time-critical applications it is worth the extra effort to
develop or utilize group communication routines which take advantage of
broadcast capabilities of local-area networks such as ethernet.  Designers
should also seek to minimize the number of messages passed between
processes and thereby cut down on overhead traffic.

One common trick to do this is make acknowledgement messages the
exception rather than the rule, by replacing common “success”
acknowledgements with much more rare “failure” receipts.  Known as
“negative acknowledgement,” this can be accomplished by attaching a small,
serialized message count to the header of each transmitted message.  Another
technique to reduce network traffic is called “hold-back.”  In this method,
undeliverable messages are left (or “held back”) at network communication
junctions until they can be delivered, usually as indicated by monitor or
sequencer processes responsible for ordering and atomicity.  This is generally
quicker than sending a message all the way from a remote source.

4.23 Give an example in
which the ordering of
multicasts sent by two
clients is not
important.  Give an
example in which it is
important.

Consider a replicated financial database which stores payroll data.  Assume
that a manager makes a change to reflect an employee’s promotion and
subsequent raise from $6 to $7.50 per hour, at the same time as the local
United Way campaign representative sends a weekly command to deduct 0.5%
of each employee’s paycheck.  If the commands were received at one server in
the order (promotion, United Way), then the resulting deduction would be
recorded as $1.50 ($7.50 x 40hrs x .5%).  However, if the other server
received the commands in the order (United Way, promotion), then the
deduction would be recorded as only $1.20—producing a 30-cent discrepancy.
 Although this is a relatively insignificant amount, it points to a potentially
catastrophic flaw in the system design which could rapidly lead to escalation
and faults (or worse, audits).

Part of the danger with the flaw is that it could take some time to be
discovered through actual use (this is why system testing needs to include a
conceptual dataflow to isolate trivial cases which may not come up frequently
in typical data sets).  For instance, had the United Way campaign withdrawn a
flat amount from each paycheck rather than a percentage, no discrepancy
would have been observed ( [pay + raise] - deduction == [pay - deduction] +
raise ).

4.25 Give an example to
show the importance of
multicast atomicity. 
Explain why a reliable
multicast might fail to
be atomic.

If data is being written or updated to a distributed database, then anything
less than fully atomic multicast produces a chance—indeed, with many
systems a likelihood—that data will exist in different states on different
servers.  That means that subsequent read operations may return data from
before the update or after (transaction procedure handling usually prevents the
special case of reading data while it is being updated).  Sometimes that’s a big
deal; other times it’s not.  For instance, the distributed DNS database is in a
constant state of flux and it takes several hours for an update made at one
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node to percolate throughout the rest of the system.  That means that a user
who subscribes to one DNS server may get the “new” IP address for a
particular domain name while another user who subscribes to a second DNS
service may get the “old” IP address—or none at all.  On the Internet, that’s
an accepted way of life and people have learned to deal with it.  Likewise,
NDS updates take a while to be replicated across a NetWare 4.1 WAN, and
cc:Mail post office changes can take their own sweet time making it to every
server.  No big deal.

However, not all systems are as flexible.  Consider the ignition systems
controlling the launch of a space vehicle such as the shuttle.  There are a lot of
little motors, engines, ignitors, hydraulics, and pneumatics that have to move
through a tightly choreographed dance in order to get that payload off the pad.
 Moreover, every space fan (and critic) knows that launches have a remarkable
tendency to be cancelled or postponed with mere seconds left on the
countdown clock.  Imagine the disaster that would occur if a broadcast
message was sent to the launch systems to cancel the ignition sequence, but
only 95% of the effected systems received the “no-go” message.  That would
leave 5% of the systems believing that they were still supposed to fire, which
could result in all kinds of unfortunate behavior (such as a single solid rocket
booster igniting—and once one of those gets lit, you don’t shut it off!).  In
such a case, it would be almost definitely preferrable for none of the systems
to obey the shutdown message and instead continue with the lift-off in spite of
whatever last-minute problem had emerged (such as learning that one of the
astronauts had forgotten their toothbrush).

For this kind of system, which isn’t all that far-fetched given the massive
defense and aerospace industries in central Florida (imagine a bomb in which
the ignition timer recieved the “go ahead” message but the release-and-drop
mechanism did not), merely “reliable” broadcast doesn’t quite cut it.  That’s
because reliable transmission only guarantees that one or more group
members received the message, based on the fact that a reply was sent back to
the sender.  “One or more” isn’t good enough when you need total
collaboration between every member of the team.  For that level of
commitment you need a fully atomic transmission, which means that every
member needs to be guaranteed of receiving each and every message, because
sometimes “almost perfect” is worse than “none-at-all”.

5.1 Which of the
parameters of these
two procedures are
input  and which are
output  parameters?

Both of the parameters to the Vote function are input parameters and both
of the parameters to the Result function are output parameters.  The Vote

parameters have to be providing input to the remote server, which would have
no other way of recording who had voted or for which candidate.  The Result

parameters have to be providing output from the server, because the client
process would have no other way of knowing which candidate won or how
many votes he or she received.
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5.5 In an implementation
of the Election  service
(Exercise 5.1) over
UNIX, there is no need
to supply users with
“voter’s numbers”
because the users’
UIDs can be used for
this purpose.  Explain
how a user package
can provide a simpler
interface to Vote than
the RPC interface.

By building the Vote and Result functions into a user interface, the system
designer can automate many tasks and insulate them from the user.  In this
case, the Vote function interface which the user sees need only have one
parameter: the candidate for whom the user wishes to vote.  After being
called, the “stub” function within the user package can add a second
parameter—the user’s UID number—before issuing the RPC call.  Although
I’m not familiar with Unix system programming, the function could be
implemented something like this:

#include <system.h>
#include <rpc/rpc.h>

#define DELIMITER '\t'

void Vote( char *candidate )
{ unsigned int thisUID;

char *serverName = "vote.webster.edu";
Data data;

thisUID = system( "getUID" );

/* however you do this */

if( !( clientHandle = clientCreate( serverName,
VOTESYSTEM, VERSION, "tcp" ) )

{ clientPcreateerror( serverName );
exit( 1 );

}
data.length = sprintf( data.buffer, "%s%c%u",

candidate, DELIMITER, thisUID );
rpcCall( clientHandle, "write", &data );
clientDestroy( clientHandle );

}

6.1 Discuss each of the
tasks of encapsulation,
concurrent processing,
protection, name
resolution,
communication of
parameters and
results, and scheduling
in the case of the UNIX
file service (or that of
another kernal that is
familiar to you).

The Sun NFS 4.0 file system meets, to varying degrees, each of the
requirements of a resource manager in a distributed file system: encapsulation
(consistent interface and hidden implementation details), concurrent
processing (ability to handle multiple clients in a transparent fashion), and
protection (access security).  Furthermore, the public-domain NFS interface
supports each of the major functions required in an invocation: name
resolution (locating a server), communcation (passing requests and results),
and scheduling (sequencing concurrent client requests for processing).

The NFS services are tightly encapsulated and hidden from the user.  In
fact, NFS is a model poster child for interface transparency, since the calling
syntax, once mounted, is identical to the access method for local files. 
Processing concurency, however, is not quite as advanced: structural design
choices severely limit scalability to less than 100 concurrent clients, and add
little to Unix’s built-in locking semantics.  (Version 4.0 now provides
advisory record locking, but still has much room for improvement.)  However,
the system is reasonably well protected, utilizing authenticated logins and
including a new (v4) optional DES encryption method to enhance the default
access control lists.  Each of these traits has proven essential when rolling out
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new commercial and experimental distributed systems.
Although encapsulation contributes significantly to a system’s modularity

and security, it leaves the users dependent on the suite of included interface
calls.  To be useful, these calls must include methods for name resolution,
communication, and scheduling.  The NFS system provides a richly endowed
name resolution system which is managed by its mount service.  Filesystems
can be resolved and bound at boot time, after user login, or delayed until a
given file is called upon and then Automounted completely in the background.
 This provides a high degree of location and migration transparency, and
load-balancing properties built into Automounter add to the system’s
concurrency transparency.

Communication in NFS is essentially undifferentiated from standard file-
level communication from the user’s and programmer’s perspective, although
a lot more message passing goes on “under the hood.”  A typical request from
a client process is directed to the Unix kernel, where it is intercepted by a
“virtual file system” (VFS) layer responsible for distinguishing between local
and remote file calls.  The VFS layer passes the request to the NFS client
module, which goes out over the network to a server’s NFS server module,
back through the server’s respective VFS layer, and ultimately ending up at
the Unix file system on the server computer.  The request is processed and the
response (positive, negative, or indifferent) is channeled back to the
originating process along the same route.

 Closely tied to communication is scheduling, which impacts how queries
are queued and processed for response.  A very important distinction between
Unix’s native file system and the NFS distributed extension is that NFS goes
to great pains to be stateless.  That means that most operations are idempotent
and can be repeated one or more times without changing the result; this is an
important characteristic in a networked environment when some messages
end up being sent or received more than once.

At the Orlando Sentinel, we use NFS modules on key Unix and Netware
servers to provide a common shared file address space to our Windows and
Macintosh content producers.  The transparent file access is a major benefit
which significantly lowers the learning curve of new employees in our rapidly
expanding online service divisions, and reduces custom programming
modifications to various Perl, TCL, and Java scripts which drive key content-
repurposing applications.  Happily, we have not yet encountered the
concurrency limits in NFS; so far our departments have not pressed the system
with too many users or requests, but it is foreseeable that such thresholds may
some day be of concern.  Finally, the protection procedures provided under
NFS aren’t of extreme importance to our users, since our multiple firewall
layers circumvent outside fiddling and basic access control prevents mistaken
file modifications in-house.
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6.2 Explain what is
security policy and
what are the
corresponding
mechanisms in the
case of a multi-user
operating system such
as UNIX.

Security policy is a set of general rules describing who is allowed what
forms of access to which data.  These rules are defined to restrict unauthorized
access to sensitive resources while permitting legitimate principals (users and
groups) to utilize needed resources.  Security policies are implemented by
security mechanisms, which are the actual methods employed in code,
hardware, and protocols to enact the desired policies.

There are a great many threats which comprehensive security policies must
guard against.  These include leakage (illegal read access), tampering (illegal
write access), resource stealing (illegal resource utilization), and vandalism
(destructive or malicious mischief).  Each of these access violations requires
some means of sneaking into a system with feigned authorization.  Typical
hacker methods include eavesdropping (packet snatching), masquerading
(pretending to be another principal), message tampering (altering message
contents while in-transit), and replaying (repeating encrypted transmissions,
particularly destructive in non-idempotent operations).  Prior to launching
such an attack, there are several ways to infiltrate a system available to those
with nefarious intent, including virus programs, worms, and trojan horses. 
Another kind of attack, known as a “quality-of-service” attack, neither
accesses nor modifies system data, but simply aims to make system resources
unavailable to principals, using such tools as the infamous “ping of death.”

A system can be tested for weaknesses to many of these attacks with the
much-maligned SATAN program, which allows a system administrator to
easily search for common security holes needing to be patched.  Another
increasingly popular way to test for security holes is to actively solicit attacks,
with some sort of incentive to successful (but non-destructive) attacks.  A
“Crack-the-Mac” contest sponsored recently in Scandanavia attracted a fair
amount of attention when hundreds of thousands of attacks, spread over
several months, failed to tamper with a Macintosh-hosted web server, even
though a $15,000 reward was offered.  Following the “success” of that contest,
many more public security tests have been promoted by other commercial
server vendors.  Although these kinds of “spectacle” security demonstrations
are popular with consumers, most system administrators demand a more
thorough and scientific demonstration of a system’s security, such as rigorous
mathematical proofs.

In order to successfully blockade a system against attacks, capable security
mechanisms must be implemented.  Standard Unix installations include a
number of mature and effective blocks against casual snooping.  One of the
most important Unix security mechanisms is the access control list, which
prescribes access to files using a user/group/universe concept.  Access to files
is thus filtered using an encrypted password file to authenticate users and
“capabilities” and “permissions” stored with each file.  Another security
mechanism popular with Unix systems is the Kerberos authentication
protocol, which uses short-lived tickets to denote priviledged access between a
client and a particular server.
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6.3 Explain the program
linkage requirements
that must be met if a
server is to be
dynamically loaded
into the kernel’s
address space, and
how these differ from
the case of executing a
server at user-level.

The Chorus distributed operating system provides an interesting
optimization which allows servers to be dynamically loaded into either typical
user-mode address space or the kernel’s protected address space.  Keeping a
server inside the kernel allows the system to operate with fewer mode-
switches, but at the cost of somewhat lessened system security.  In order to
transparently take advantage of this capability, interprocess communication is
generalized to the point where calling (client) processes use the same message
passing interface whether the receiving server is inside or outside the kernel;
in fact, clients typically have no way of knowing whether a particular server is
in the kernel or not.  Likewise, servers inside the kernel may act as clients of
other servers also inside the kernel, neither being aware that the other is just a
short memory-hop away.

One foreseeable problem with this arrangement, which I did not find
addressed in the text, is how the system should handle dynamically linked
runtime libraries which are shared between kernel-level processes and user-
level processes.  In general, such common libraries are loaded into memory
only once and mapped to each executing process which relies on the code. 
This greatly improves memory conservation by eliminating duplicate code
blocks.  However, if a single library were being shared by a kernel-process and
a user-process, then the library would need to be loaded in either the kernel
space or user (unprivileged) space.  In the first instance, user-level processes
accessing library routines would have implicit access to modules running in
supervisor mode, which is a security violation of the first order.  In the second
case, kernal code would be continually calling user-level libraries and
incurring overhead costs with each context swap.  The most likely solution,
since the provision of kernel-space servers already suggests a willingness to
put system response speed ahead of other concerns, is to allow any given
library to be loaded both in the kernel’s space and in user-space and
automatically direct program calls to the appropriate module.

6.4 How could an interrupt
be communicated to a
user-level server?

System interrupts occur and are reflected in kernel (protected) memory
space and are thus generally invisible to user-level processes.  When a user
process (typically a server or monitor process) needs to be able to view or
respond to these events, portions of system memory can be mapped to the user
memory space.  Special system calls are necessary to implement such
mapping, and they obviously require the kernel’s cooperation.

7.1 The file service model
treats the management
of file directories as a
separate service.  What
information is stored in
directories?  What are
the advantages and
drawbacks of the
separation?

The model file service described in the textbook separates directory
management from the file service.  Each service has its own distinct interface,
and different file metadata is maintained by each module.  By dividing
directory and file management tasks, several advantages are created over a
unified file/directory service.  There are also a few disadvantages to the
division of services, but on the whole it provides a powerful and flexible
system of managing file information.

The directory service is responsible for storing as much of the file metadata
as possible without severely impacting efficiency.  In particular, the directory
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keeps track of the textual filenames perferred by humans, and maps those
strings to the integer UFID identifiers preferred by digital computers. 
Directories also store useful information about a file, such as the access
control list defining who is allowed to read, write, and execute each file; file
types, for operating systems which care about such things; and file ownership
for tracking and auditing.  Finally, directories store information about other
directories and thus make possible the deeply nested hierarchic structures to
which we have become accustomed.

There are several advantages to this schema.  First of all, the separation of
services allows multiple directory systems to be mapped to a single file
service.  In the heterogenous network environment common to modern
academic and corporate installations, this allows a single file system to
transparently service clients from multiple operating systems and greatly
facilitate cross-platform collaboration.  Novell Netware servers provide this
functionality by allowing DOS, Macintosh, and NFS name spaces to be loaded
for each mounted volume.  Separation of services also contributes greatly to a
system’s openness, by allowing one service to be upgraded or replaced without
affecting other system functions (as long as calling interfaces are left
unaffected).  Another advantage of special interest in distributed systems is
that directory systems are not necessarily tied to the same physical computers
or networks as the file service, allowing systems to be distributed and
apportioned as necessary for individual applications.

There are a few drawbacks to such a system, but for the most part they are
inconclusive and easily sidestepped.  For instance, each added software layer
brings with it a degree of added overhead and latency, potentially degredating
total system performance.  Another problem related to separation is that
failure of one service—of the directory service, for example—makes access to
the remaining file service problematic at best.

7.2 Why are the file
attributes stored with
files and not in
directories?

(Hint: several directory
entries can refer to the
same file.)

There are at least four good reasons to keep key file attributes local to the
files rather than in a separate directory service.  First, multiple directory
systems can point to a single file, and it would not be proper to base file access
on the calling directory system rather than file ownership or the defined
access control list.  Second, even within a single directory service, multiple
entries can point to a single UFID in the case of aliases, symlinks, shortcuts,
etc.  Third, it would be inefficient to have to refer back to the directory service
every single time a client tried to modify a file; it is much quicker and easier
to be able to authenticate such calls within a single server.  Fourth, even
separate file systems typically allow direct access calls which bypass the
directory system, and it would not do to allow such precocious clients to gain
unauthenticated access to an entire file system.

9.1 Describe the names
(including identifiers)
and attributes used in a
distributed file service
such as NFS (see
Chapter 8).

A distributed file service must maintain a variety of data tables listing the
many names, identifiers, and attributes associated with each file.  These labels
are not only for internal use in resolving client requests but also to provide a
flexible and human-useful calling interface to other programs.  Listed
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herewith are some of the many descriptors which a service such as NFS must
maintain:

Directory Name, which holds the textual name of the enclosing directory;
File Name, which holds the textual name of a particular file entry;
UFID, which holds the computer-readable bitmap uniquely identifying a

single file entity;
File Attributes, many held in bit-flag arrays, connoting such information as

the access control list, file ownership, the file length in bytes, and
time/datestamps; and

Filesystem Status Variables, which report data like the current volume block
size and the amount of unallocated storage space.

Some would also consider elements of the calling interface to be exported
identifiers, including function names like readdir(), symlink(), and setattr(). 
In a similar vein, file services must track both their own receiving port
identifiers and the reply-to ports of their clients, plus the names and addresses
of other services on which it depends, such as name and synchronization
servers.

9.7 How does caching help
a name service’s
availability?

Although no subsystem in a distributed environment is exactly frivolous,
few are as essential to moment-to-moment operations as the name services
which allow different units to contact one another across a network.  For that
reason, name services are generally designed with extremely high levels of
availability.  One of the main methods system designers employ to guarantee
high uptime and accessiblity is extensive use of caching.

By caching recently resolved name/address pairs, systems can
communicate with each other without bothering the name servers before every
transaction.  This is a very good thing, for otherwise the name servers would
be totally swamped with redundant traffic asking the same questions over and
over, forgetting the answer after every reply.

Part of caching involves the use of secondary servers which act as shared
caches for whole networks of computers.  While individual hosts may be
expected to efficiently cache dozens or hundreds of recent name/address pairs,
secondary name servers can effectively maintain many thousands of records
for rapid resolution.  In the occasional instance when neither a host nor a
secondary server can resolve a name, a primary server can handle the request
from its mammoth distributed tables.  In fact, by caching (namePrefix,

serverName) pairs, an unknown name may be resolved even in the absence or
failure of a root server by directly contacting the secondary servers responsible
for that branch of the name tree.

As an excellent example of how this works, late last week (Friday, July 17,
1997), the following message was broadcast to clients of the BBN network:

Last night, the primary interNIC Root Server, the machines that all
Internet backbone providers use to identify domains on other
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networks, was corrupted by a possible power problem at the location
where it is housed. This has caused most root servers on the Internet
to have incorrect data as well. The interNIC has corrected their
primary root server, but are awaiting secondary servers across the
various networks to upload the corrected information.

Until this has occurred, all customers on all Internet providers will
have difficulty reaching addresses in the .com and .net domains. We
do not currently have a definitive time frame for when this will occur.
We will continue to update this message regularly and as we receive
more information.

(For a complete history of this ticket, do "finger ticket-128295@
tickets.bbnplanet.com")

Thanks to local and secondary server caching of previously resolved
addresses, many users were able to carry on normal internet activity without
even noticing the outage or corrupted tables.  Only in the case of “new”
addresses—or addresses so old as to have been rotated out of the cache—did
users have difficulty reaching their target destination.


