
COSC 5010

Webster University

Dr. Mike Moody

Mark Zieg

December 15, 1997

OBJECT-ORIENTED
ANALYSIS & DESIGN

Assignment #1

TEXTBOOK
EXERCISES

Chapter 1: Introduction

1 . 5 All objects have identity and are distinguishable. However, for large collections of
objects, it may not be a trivial matter to devise a scheme to distinguish them.
Furthermore, a scheme may depend on the purpose of the distinction. For each of the
following collections of objects, describe how they could be distinguished:

a . All persons in the world for the
purpose of sending mail.

Country; state or province; city; street and number;
apartment, suite, or mail drop; name (ie, USA ->
Florida -> Orlando -> 633 N Orange Ave -> Mail
Point 85 -> Mark Zieg)

b . All persons in the world for the
purpose of criminal investigations.

Known aliases, fingerprints, photo, results of
restriction-enzyme DNA tests (ie, Andrew Wiggen,
AKA Ender Wiggen, AKA Xenocide)

c . All customers with safe deposit
boxes in a given bank.

Box number (ie, 1258)

d . All telephones in the world for
making telephone calls.

National code, local exchange (area code), local
number (ie, 10-104 (407) 420-6072)

e . All customers of a telephone
company for billing purposes.

Area code, telephone number (ie, (407) 420-6072)

f . All electronic mail addresses
throughout the world.

Server domain or IP, account name (ie,
mzieg@orlandosentinel.com)

g . All employees of a company to
restrict access for security
purposes.

Department; clearance level; name, social security
number, or employee number (ie, SYSTEMS-L15-
2072)

1 . 7 There are two lists below. The first is a list of classes that describe implementation
objects. The second is a list of operations. For each class, select the operations that
make sense for the objects in that class. Discuss the behavior of each operation
listed for each class.

Classes:
Variable length array ordered collection of objects, indexed by an integer,

whose size can vary at run-time
symbol table a table that maps text keywords into descriptors
s e t unordered collection of objects with no duplicates

Operations:
append add an object to the end of a collection
copy make a copy of a collection
count return the number of elements in a collection
delete remove a member from a collection
index retrieve an object from a collection at a given position
intersect determine the common members of two collections
insert place an object into a collection at a given position
update add a member to a collection, writing over whatever is

already there

A variable length array would make effective use of the following operations: append, copy,
count, delete, index, insert, and update. The only operation which wouldnÕt make a great deal of
sense would be intersect. The append operation makes sense because the ordered nature of the array
presupposes a ÒbeginningÓ and an ÒendÓ. The append operation would allow object users to easily
add something to the end of the array, in the manner of a queue or other common data structure.
Copy makes sense with any object, because multiple object instantiations are frequently found in
many common applications. Count makes since because it provides a bound to the index range,
although the question didnÕt specifically mention that the indexes had to be sequential or positive
values. Delete is another natural operation, especially when parameterized with a Òbeginning,Ó
Òend,Ó or Ò[index]Ó indicator. Index would be essential in order to access various elements. Insert
would be a more flexible version of append, and indeed under some interfaces render it unnecessary.
Update would be important in any application in which data needed to be modified without going
through a delete/insert sequence. Intersect could readily be provided if really desired, but I havenÕt
had much call do use such an operation on an ordered array.

A symbol table uses a somewhat smaller set of operations. Here, copy, delete, intersect, and
update are the most likely candidates. Again, copy is universally popular. Update, in the sense of
an unordered insert, would be necessary to propagate the table, and delete would be necessary to
flush unnecessary values. Intersect somehow sounds more likely for this class than for array,
because you certainly need to compare elements of symbol tables when linking libraries and object
code. Some sort of operation to retrieve or read an entry would also be necessary, although I
wouldnÕt call it Òindex,Ó which suggests an ordered position rather than a key value. Append,
index, and the ordered insert make less sense because they provide implementation-specific details
which arenÕt necessary and contradict the tenets of OOD. Count could perhaps be useful in certain
systems, but many could do perfectly well without it.

Finally a set could use copy, count, delete, intersect, and update operationsÑalmost the same list
as a symbol table, and for similar reasons. Copy is universal (as long as you give due credit to
your source :-) Update (unordered insert) and delete are fundamental to all collections, and count is
just plain handy to have around. Once again, some sort of read or retrieve operation would be nice
to have available, but index has all the wrong connotations. You could have ÒdeleteÓ return an
item, I suppose. On the other hand, append, index, and insert violate the premise of
Òunorderedness.Ó And having a set class without intersect (as well as union) just wouldnÕt be
proper.

Chapter 2: Modeling as a Design Technique

2 . 2 Suppose your bathroom sink is clogged and you have decided to try to unclog it by
pushing a wire into the drain. You have several types of wire available around the
house, some insulated and some not. Which of the following wire characteristics
would you need to consider in selecting a wire for the job? Explain your answers.

a . Immunity to electrical noise Makes no sense. There is precious little electricity
running through household sinks, and if there is any
you should unplug it before performing maintenance
anyway.

b . Color of the insulation DoesnÕt merit a response (unless the plumber in
question was severely colorblind :-)

c . Resistance of the insulation to
saltwater

ShouldnÕt be a factor; most indoor faucets these days
are of the freshwater sort, which is a pity because you
can catch some nice sea bass in the saltwater variety.

d . Resistance of the insulation to fire Would be something to consider, except that when I
have a fire in my sink plumbing, my first response is
to turn on the tap for a few minutes. The second is
to cut back on my caffeine intake.

e . Cost This might actually be a genuine issue. I certainly
wouldnÕt lop off a loop of premium co-ax when a
twisted coat-hanger will do.

f . St i f fness Of key importance, since it does no good to shove a
line down a tube if it only loops back and runs out
the top again.

g . Ease of stripping the insulation MaybeÑmaybeÑif you have porcelain piping, or
thin copper, or some other material that might be
easily scratched by contact with open metal.

h . Weight Only inasmuch as wire weight is frequently
proportional to stiffness (cf 2.2f).

i . Availability Well, gee, if it isnÕt there, you canÕt very well use it,
can you?

j . Strength Depends on the strength being measured.
Compression-strength would matter, provided the
wire was sufficiently stiff to not bend first. However,
stretch-strength shouldnÕt matter unless you were
trying to hook the clog and drag it back out.

k . Resistance to high temperatures Cf 2.2d, ÒfireÓ. Unless, one might speculate, the
household bathroom in question backed up against a
forge in the garage.

l . Resistance to stretching Cf 2.2i

2 . 4 If you were designing a protocol for transferring computer files from one computer to
another over telephone lines, which of the following details would you select as
relevant? Explain how your selected details are relevant:

a . Electrical noise on the
communication lines

Definitely. High levels of noise should be met by a
protocol feature to renegotiate the bit rate to a lower
bandwidth, allowing more signal samples per bit
transmitted.

b . The speed at which serial data is
transmitted, typically 300, 1200,
2400, 4800, or 9600 bits per
second

This would be necessary if the designer desired the
protocol to be sufficiently generalized to be used in a
heterogeneous environment in which DTEÕs
supporting different ranges of connection rate were
expected to communicate.

c . Availability of a relational
database

Not unless you want a really flexible log file.

d . Availability of a good full screen
editor

This wouldnÕt necessarily impact the protocol itself,
but I wouldnÕt be caught dead designing anything
without a good full-screen editor (say, BBEdit, Brief,
or UltraEdit). So for me, this is a definite
requirement.

e . Buffering and flow control such as
an XON/XOFF protocol to regulate
an incoming stream of data

Only if you start with the unreasonable expectation
that the data sent will actually resemble the data
finally received.

f . Number of tracks and sectors on
the hard and/or floppy drive

This information should all be politely swept under
the rug by the file system.

g . Character interpretation such as
special handling of control
characters

This would be a very good idea if the designer wished
to send binary files, or even 8-bit ANSI text.

h . File organization, linear stream of
bytes versus record oriented, for
example

As I understand it, some early and crude file-transport
protocols did seem to care about this, but almost all
modern protocols are transparent in this regard.

i . Math co-processor Not unless you wanted to bundle in a bizarre and
computationally-expensive compression scheme
(although I can envision a few security encodings that
could benefit from an FPU).

Chapter 3: Object Modeling

3 . 6 Prepare a class diagram from the instance diagram in Figure E3.4.

(Person)
a grandmother

Mate

MateSibling

Cousin

(Person)
an aunt

child child child

child child

(Person)
a cousin

(Person)
you

(Person)
your father

(Person)
your mother

(Person)
a grandfather

Figure E3.4

Class Diagram:

child
Mate Cousin

Sibling

Person

Name
Birthday

3 . 1 5 Prepare object diagrams showing at least 10 relationships among the following object
classes. Include associations, aggregations, and generalizations. Use qualified
associations and show multiplicity balls in your diagrams. You do not need to show
attributes or operations. Use association names where needed. As you prepare the
diagrams, you may add additional object classes.

a . school, playground, principal, school board, classroom, book, student,
teacher, cafeteria, restroom, computer, desk, chair, ruler, door, swing

Book

Board Member

Student

ComputerChairRuler

Playground

School Board

Superintendent

Principal

School

Classroom DeskCafeteriaRestroom

Slide

Swing

Room

enrolls

book #
is-issuedsits-at

governs

appoints

appoints

sit-on

A School Board is composed of five elected Boardmembers, who then appoint a Superintendent.
The SuperintendentÕs chief duty is to hire and assign Principals to individual Schools. Each
School has Rooms, Students, Desks, a Principal, and perhaps a Playground. If it has a
Playground, the Playground can have Swings and/or Slides. Rooms may be Restrooms,
Classrooms, or Cafeterias. Any Room may have Restrooms attached, although in a pinch one
Restroom may service several Rooms. Desks are placed in Classrooms and seat Students. Desks
each have a Chair, and some have Rulers and/or Computers. Students are issued Books, which are
tracked by their book #.

b . castle, moat, drawbridge, tower, ghost, stairs, dungeon, floor, corridor, room,
window, stone, lord, lady, cook

Castle

Stairs

Cooridor

Drawbridge

Tower

Room

Dungeon

Furniture

Ghost Floor

Wall

Ceiling

Window

Door

Stone

Lord

Cook

Lady Moat

TableTapestry Bed

2

Corner
ru

le
s

ha
un

ts
weds

contains

retains crosses

joins

A Lord may rule Castles and wed Ladies. Each Lady may have a staff including Cooks. A Castle
has Rooms and may have a Moat. Moats must have at least one Drawbridge to permit crossing.
Rooms can be Corridors, Dungeons, or Towers, and each may be haunted by a Ghost. Towers
contain other Rooms, while Corridors may or may not have Stairs. Each Room has a Floor,
Walls, and may have a Ceiling and may be Furnished. Each Wall may be joined to other Walls at
Corners, and the number of Walls is not limited (a Tower may have only one WallÑroundÑ
whereas the Room atop a Tower may have no walls at all, only a Floor). Floors, Walls, and
Ceilings are all made of Stones. Each Ceiling may be also a Floor to another Room. Walls may
have Windows and Doors. While one Room may have several Doors, each Door connects exactly
two Rooms. Furniture can include a Tapestry, a Bed, or a Table.

Chapter 4: Advanced Object Modeling

4 . 1 The object diagram in Figure E4.1 is a partial representation of the structure of an
automobile. Improve it by changing some of the associations to aggregations.

Door Body

Automobile

Power
Train

Engine Transmission Brake
Switch

Brake
LightWheel

Exhaust
System

PipeMuffler

Electrical
System

Brake

Battery AlternatorStarter

Steering
System

Braking
System

Gas
Tank

Figure E4.1

Door Body

Automobile

Power
Train

Engine Transmission Brake
Switch

Brake
LightWheel

Exhaust
System

PipeMuffler

Electrical
System

Brake

Battery AlternatorStarter

Steering
System

Braking
System

Gas
Tank

Note my object model allows multiple gas tanks, since many vans and trucks have that feature.

4 . 2 Figure E4.2 is a partially completed object diagram for an interactive diagram editor. A
sheet is a collection of links and boxes. A link is a sequence of line segments that
connect two boxes. Each line segment is specified by two points. A point may be
shared by a vertical and a horizontal line segment in the same link. A selection is a
collection of links and boxes that have been highlighted in anticipation of an editing
operation. A buffer is a collection of links and boxes that have been cut or copied
from the sheet. As it stands, the diagram does not express the constraint that a link
or a box belongs to one buffer or one selection or one sheet. Revise the object
diagram and use generalization to express the constraint by creating a superclass for
the classes Buffer, Selection, and Sheet . Discuss the merits of the revision.

Link

Box

Sheet
Line

Segment PointSelectionBuffer
2

21,2

Figure E4.2

Sheet

Box

Link
Line

Segment

Point

Selection

Set

Buffer

2
1,2

2

The main benefit is the inheritance of attributes, operations, and associations from the superclass
(set) to the subclasses (buffer, selection, sheet). A single constructor or destructor can now apply
to all sets, and the structures for links and boxes will be prebuilt for each set. This saves a lot of
coding time and reduces potential for error. Also, common operations like copy, cut, and paste can
be shared, as well as typical traits like size, dimensions, and object-count.

Chapter 5: Dynamic Modeling

5 . 1 Write scenarios for the following activities:

a . Moving a bag of corn, a goose, and a fox across a river in a boat. Only one
thing may be carried in the boat at a time. If the goose is left alone with the
corn, the corn will be eaten. If the goose is left alone with the fox, the goose
will be eaten. Prepare two scenarios, one in which something gets eaten and
one in which everything is safely transported across the river.

Scenario #1

Step 1: The user takes the Fox across the river.
Step 2: The Goose eats the Corn.
Error State: Something was eaten.

Scenario #2

Step 1: The user takes the Goose across the river.
Step 2: The user returns alone.
Step 3: The user takes the Fox across the river.
Step 4: The user returns with the Goose.
Step 5: The user takes the Corn across the river.
Step 6: The user returns alone.
Step 7: The user takes the Goose across the river.
Final State: Everything has been taken safely across.

b . Getting ready to take a trip in your car. Assume an automatic transmission.
DonÕt forget your seat belt and emergency brake.

Step 1: Make sure the user has keys with them.
Step 2: Lock the home or office being left.
Step 3: Travel to the car.
Step 4: Walk once completely around the vehicle to make sure there are no children or

toys behind the car.
Step 5: Use the remote to disable the security system.
Step 6: Unlock the driverÕs-side door.
Step 7: Enter the vehicle.
Step 8: Close the door.
Step 9: If the previous driver was of a different shape or height, adjust seat and steering

wheel positions and realign mirrors.
Step 10: Connect seat belt.
Step 11: Place key in ignition.
Step 12: Turn key, applying modulated pressure to the accelerator if necessary.
Step 13: Engine starts.
Step 14: Release key.
Step 15: Lower the radio volume; make mental note to yell at kids.
Step 16: Apply foot-brake.
Step 17: Release emergency brake.
Step 18: Move gear to Reverse or Drive, depending on how the vehicle was last parked.
Final State: Ready to take trip.

c . An elevator ride to the top floor.

Step 1: Press the up button.
Step 2: Button lights up.
Step 3: Wait for elevator.
Step 4: Elevator door opens, with two passengers visible inside.
Step 5: Man gets out.
Step 6: Woman inside asks, ÒGoing down?Ó
Step 7: Indicate to the negative, grind teeth.
Step 8: Door closes.
Step 9: Wait, tapping toe impatiently.

Step 10: Door opens, ugly man visible inside.
Step 11: Enter elevator.
Step 12: Door closes.
Step 13: Note that top floor button is already lit.
Step 14: Press button anyway in a fit of pique.
Step 15: Wait while elevator slowly climbs, inhaling the fragrant body odor of offensive

companion.
Step 16: Elevator stops at top floor.
Step 17: Door opens.
Step 18: Crowd of loud, cigar smoking executives immediately shove into elevator,

cramming the user into the back despite protests.
Step 19: Imperious executive presses the Lobby button.
Step 20: Door closes.
Step 21: Ugly companion turns to user and asks if he frequents this elevator often.
Step 22: Elevator begins to descend.
Final State: User successfully used the elevator to ride to the top floor.

d . Operation of a car cruise control. Include an encounter with slow moving
traffic that requires you to disengage and then resume control.

Step 1: Press the button to activate cruise control system.
Step 2: Green light comes on to indicate cruise control available.
Step 3: Use accelerator or brake to carefully modify speed to desired velocity, ideally

10% above posted speed limit.
Step 4: Press the button to set the cruise control.
Step 5: Blue light comes on to indicate cruise control is active.
Step 6: Remove foot from accelerator.
Step 7: Roll down the window and enjoy the wide-open spaces and fresh air of the

Florida Turnpike.
Step 8: When approaching Toll Booth, disengage cruise control by pressing brake pedal.
Step 9: Blue light turns off.
Step 10: Breeze through E-Pass lane, smiling airily at frustrated tourists groping for

change.
Step 11: Re-engage cruise control and allow car to resume established speed.
Step 12: Blue light comes on.
Step 13: Hum merrily along to light classical music wafting from the transmitters of

WMFE 90.7.
Step 14: When approaching Exit 259, disengage cruise control by pressing brake pedal.
Step 15: Blue light turns off.
Step 16: Take exit ramp to I-4.
Step 17: Decelerate further to merge with morning rush hour.
Step 18: Decelerate further when gawkers pause to stare at a fender-bender.
Step 19: Come to a complete halt at the overwhelmed 408 exchange.
Step 20: Grind teeth, learn to hate life, and wonder tiredly whether you will ever see the

blue light again.
Step 21: Angrily turn off cruise control system, change radio to depressing Country &

Western K92-FM.
Step 22: Green light turns off.
Step 23: Green light stays off.
Final State: Imminent Road Rage.

5 . 2 Some combined bath-showers have two faucets and a lever for controlling the flow of
the water. The lever controls whether the water flows from the shower head or directly
into the tub. When the water is first turned on, it flows directly into the tub. When the
lever is pulled, a valve closes and latches, diverting the flow of water to the shower
head. To switch from shower to bath with the water running, one must push the lever.
Shutting off the water releases the lever so that the next time the water is turned on, it
flows directly into the tub. Write a scenario for a shower that is interrupted by a
telephone call.

Step 1: Fetch cordless phone.
Step 2: Fetch large ziplock bag.
Step 3: Place phone in bag, with antenna poking through small hole in corner.
Step 4: Seal bag.
Step 5: Strip.
Step 6: Turn on hot faucet to 75% flow.
Step 7: Turn on cold faucet to 25% flow.
Step 8: Wait for hot water to flow from solar panels on roof.
Step 9: Test temperature.
Step 10: Decrease hot flow by 10%.
Step 11: Test temperature.
Step 12: Smile happily.
Step 13: Decide to use toilet.
Step 14: Flush.
Step 15: Reach into shower and flip lever to showerhead position.
Step 16: Step into shower.
Step 17: Scream.
Step 18: Jump back out of shower.
Step 19: Wait until toilet tank finishes refilling from cold water pipes.
Step 20: Gingerly test temperature.
Step 21: Sigh with relief.
Step 22: Re-enter shower.
Step 23: Lather hair.
Step 24: Phone rings.
Step 25: Smiling in satisfaction at your paranoia, reach out of shower and pick up

waterproofed phone.
Final State: Clean and Communicating.

5 . 4 An extension ladder has a rope, pulley, and latch for raising, lowering, and locking the
extension. When the latch is locked, the extension is mechanically supported and you
may safely climb the ladder. To release the latch, you raise the extension slightly with
the rope. You may then freely raise or lower the extension. The latch produces a
clacking sound as it passes over the rungs of the ladder. The latch may be reengaged
while raising the extension by reversing direction just as the latch is passing a rung.
Prepare a state diagram of an extension ladder.

L
o

cked Rope Sla
c

k

L
o

cked Rope
Ta

u
t P

a
ssing Rung

U
p

Unlocked

low
erra

is
e

ra
ise

raisera
is

e
lower

lower

Chapter 6: Functional Modeling

6 . 1 Describe the meaning of the data flow diagram in Figure E6.1.

electrical
analysis

electrical parameters

load
characteristics

electrical torque

air flow

sp
ee

d

lo
ss

es

fa
n

to
rq

ue

te
m

pe
ra

tu
re

voltage, frequency

thermal parameters

ambient temperature

thermal
analysis

mechanical
analysis

fan
analysis

Figure E6.1

The model shown is a data flow diagram for an electrical motor diagnostic analysis. There are four
analyses which must be determined: the electrical system, the mechanical system, the fan
subsystem, and a thermal analysis. Each of the analyses directly or indirectly contribute to the
studies of the other systems.

The electrical analysis takes values from the applied voltage and signal frequency, as well as other
electrical parameters. It also takes speed data from the mechanical analysis and temperature results
from the thermal analysis. In turn, it produces an electrical torque reading which is used for
subsequent mechanical analyses and a losses value for ongoing thermal analysis.

Likewise, the mechanical analysis receives load characteristics and, together with fan torque data
from the fan analysis and electrical torque data from the electrical analysis, computes speed
information which is returned to the electrical and fan analyses.

The fan analysis uses this speed data to refine its computations and produces an air flow result for
the thermal analysis (as well as returning fan torque data to the mechanical analysis).

Finally, the thermal analysis takes the air flow data from the fan analysis, the electrical loss data
from the electrical analysis, as well as thermal parameters and ambient temperature readings from
outside the system, and creates the temperature data used by the electrical analysis.

6 . 5 Prepare a data flow diagram for computing the mean of a sequence of input values. A
separate control input is provided to reset the computation. Each time a new value is
input, the mean of all values input since the last reset command should be output.
Since you have no way of knowing how many values will be processed between resets,
the amount of data storage that you use should not depend on the number of input
values. Detail your diagram down to the level of multiplications, divisions, and
additions.

A
dd

Va
lue toTotal

In
cr

em
ent Count

Di
vi

de

Total by C
ount

St
or

e

Result in M
ean

O
utp

ut Mean

G
et

Next Input

S
to

re

Zero toTotal
St

or
e

Zero to Count

Value

R
es

et

Chapter 7: Methodology Preview

7 . 2 This book explains how to use object-oriented techniques to implement programs and
databases. Discuss how object-oriented techniques could be applied in other arenas,
such as language design, knowledge representation, and hardware design, for
example.

Many of the principles of object-oriented analysis and design could be applied to fields beyond
computer programming. Two such fields are structural engineering and educational curriculum
development. Each of these fields involves analyses and planning of large-scale projects involving
many sub-processes and components that must interact together in complex patterns and which
often share similar traits and operations. Object-oriented tools such as the OMT model could be
applied to manage complexity and help visualize, track, and quality-test component relationships
in a scaleable and comprehensible manner.

Structural engineering, for instance, is often called into play in the design, analysis, and
construction of large office buildings such as the new Orlando Courthouse facility. Each building
is composed of many rooms, hallways, columns, etc, with a great many infrastructure systems
embedded into the walls, floors, and ceilings. These systems include climate control, plumbing,
data communications, and many other underlying frameworks. The number of systems which
must be understood to design, analyze, and build a single room of a single building would be
overwhelming for the most educated architect, laborer, or electrician. However, object-oriented
modeling would allow each subsystem to be logically isolated from the others, with the few
instances of interaction clearly called out for implementation or study.

Educators often face similarly complex decisions when developing an instructional curriculum,
especially in the interdisciplinary and holistic environment encouraged today by educational
theorists. An individual lesson should contain elements of literature and composition,
mathematical reasoning skills, draw from a broad body of scientific knowledge, and be presented
within an appropriate historical context. Meanwhile, the activities themselves should be executed
in a systemic framework involving a lively lead-in with ties to previous lessons, content
instruction, guided practice, individual or group practice, evaluation, and review. Many teachers
find themselves prematurely gray after trying to effectively meet each of those state-mandated goals
within 40-minute class periods, a forty-hour week, and little or no instructional budget. By
incorporating elements of object-oriented analysis and design, teachers could more easily and
quickly produce well-rounded and effective lesson plans. Object inheritance could help provide
common delivery characteristics, state diagrams could help manage the flow of activities and
materials among dozens of students, and object models employing generalization and aggregation
could help students and teachers visualize connections between different content areas.

Through careful application of object-oriented analysis and design methodologies, professionals in
a wide variety of fieldsÑincluding education and structural engineering, but also cosmologists,
psychology, neonatal child care, and hundreds of other complex subjectsÑcan better comprehend
the myriad entities they must deal with and more accurately anticipate the relationships between
them.

Chapter 8: Analysis

8 . 3 Rephrase the following requirements to make them more precise. Remove any design
decisions posing as requirements:

b . A system for automating the production of complex machined parts is needed.
The parts will be designed using a three-dimensional drafting editor that is part

of the system. The system will produce tapes that can be used by numerical
control (N/C) machines to actually produce the parts.

A system for automating the production of arbitrarily shaped machined parts is needed. The design
environment will provide advanced visualization and object-manipulation tools to the editor.

The drafting editor will design the parts in a graphical environment in which views can be
controlled to accurately display objects at any ratio between 10,000:1 and 1:100 scale, from any
virtual position and at any angle. The system must be able to provide such views in either
wireframe, filled plane, or light-rendered mode, and should correctly portray the visual
characteristics of typical materials including steel, glass, and a range of polymers. All views must
be storable for later retrieval or printing.

The editing environment must allow full manipulation of virtual object surfaces and should for
efficiency provide a template library of typical objects (sphere, cube, torus, sheet, etc). The user
should be able to add new objects to the library to speed creation of similar widgets, and should be
able to store and retrieve an arbitrary number of widgets. After design, the widgets may be output
to a different system which will actually produce the parts.

Finally, the system should be sufficiently scaleable so that additional storage or computational
capacity may be added as needed. There should be a facility for moving widgets between similar
systems if we acquire additional units.

c . A desktop publishing system is needed, based on a WYSIWYG philosophy. The
system will support text and graphics. Graphics include lines, squares, boxes,
polygons, circles, and ellipses. Internally, a circle is represented as a special
case of an ellipse and a square as a special case of a box. The system should
support interactive, graphical editing of documents.

A full pagination system is required which will allow digital development of all aspects of a
broadsheet daily newspaper. Editors, reporters and columnists, illustrators, photographers, and
advertising and classified staff will use the system to combine their individual elements into a
completed newspaper ready for imaging.

The system must be graphical in nature so that illustrations and photographs may be accurately
visualized on a page, and proportional multi-face type will be rendered on screen as it will appear
on the final printed product. Sophisticated color matching and calibration will be essential so that
elements coming from different sources will be correctly displayed on a variety of 3rd-party
monitors. Color matching will also be of paramount importance at the printed stage, so that
differing hues of paper stock, from brown newsprint to white high-gloss, can be used successfully.

A comprehensive routing capability should be used throughout, so that editors can create layouts,
content producers can fill in their elements, editors can review the composition and return it
repeatedly for correction, then route the approved document to preflight and press.

Text elements should be capable of containing an arbitrary amount of type set in PostScript Type
1 fonts. A third-party H&J (hyphenation and justification) engine may be accessed to set the type
accurately and quickly. Graphic elements may be either TIFF, Scitex-CT, or EPS images.

Some sort of ÒframeÓ or ÒregionÓ interface should be provided, allowing editors to layout a page
before specific content is available. These layouts should be reusable so that old layouts can have
new content (images, text) ÒflowedÓ into them. Some sort of identification system should thereby
be provided to record the position, shape, intended contents, and other key attributes of each region.

There may be a distinction between basic elements which can be created and edited directly within
the system and advanced elements which require the use of a third party program such as Microsoft
Word, Adobe Photoshop, or Macromedia Freehand. Basic text entry, editing, and type styling
should be feasible within the layout system, but advanced features such as spell-checking,
outlining, etc may be left to an outside program. Likewise, basic graphic elements such as lines
and hollow or filled boxes, polygons, and ellipses should be accessible within the layout program,
but more advanced options like soft drop-shadows and morphing may be relegated to an outside
system.

It is essential that, once data is entered into the system, it should be accessible by outside
programs through a published API. For instance, an outside program should be able to call up the
full text of every story, together with associated images, and extract them to repurpose for online
publishing.

With respect to printing, the system should automatically position pages for side-by-side folded
duplex imaging, so that a sample 4-page run would actually print one duplex broadsheet with
pages 4 and 1 on one side and 2 and 3 on the inside.

Finally, an automated archive and integrated version-tracking application should maintain a log of
accesses and modifications by user, date, and story, and automatically archive each paper in a full-
text searchable format to a reliable and cost-effective media such as CD-R.

e . A system for distributing electronic mail over a network is needed. Each user
of the system should be able to send mail from any computer account and
receive mail on one designated account. There should be provisions for
answering or forwarding mail, as well as saving messages in files or printing
them. Also, users should be able to send messages to several other users at
once through distribution lists. Each computer on the net should hold any
messages destined for computers which are down.

A system for distributing electronic mail over a network is needed. Each user of the system should
be able to send mail from any computer account and receive mail on one designated account. There
should be provisions for answering or forwarding mail, as well as saving messages in files or
printing them. Also, users should be able to send messages to several other users at once. The
system should be sufficiently fault-tolerant that undelivered messages will not be lost if the
destination account is temporarily malfunctioning or otherwise unavailable.

Assignment #2

BANK
SYSTEM

A bank needs a system to keep track of customers, accounts, and safe
deposit boxes. Customers will maintain their accounts by making
requests of cashiers, who then enter each transaction into a terminal. The
cashiers are responsible for accepting or dispensing any monies as
directed by the system, and provide access to safe deposit boxes.

A customer may have multiple accounts, and may have a single safe
deposit box. An account may be a share account, a certificate of deposit,
or a loan. All accounts generate interest at specific compounding
intervals. Besides opening new accounts and closing old ones, customers
may check the balance of any open account or request a transaction
history.

Share accounts are built up through deposits and must be either draft
accounts, which allow customers to write, cancel, or order checks, or
savings accounts, which only permit simple withdrawals. In contrast,
certificates of deposit are meant to be redeemed at a specific maturity
date, and increase in value until then. They can be set to automatically
rollover to new accounts after they mature, and they can be cashed out
early at their current value, minus a redemption fee.

Loans are of a specific amount, and remain open until the entire principal
owed is remitted in installments no less than the specified minimum
payment. The bank tracks the accumulated interest paid and the
outstanding balance, although the customer may be allowed to refinance
the loan terms. Some loans are home mortgages, which can have
variable interest rates, and must be guaranteed by a mortgage insurer. If
the customer defaults, the bank may recoup its losses by repossessing
the house for liquidation at its assessed value. The bank also offers
college loans, whose terms can depend on various federal programs for
which the customer may qualify.

BANK SYSTEM MAIN

1 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the Problem Statement for a Bank
System which tracks customers, accounts and
safety deposit boxes.

Object

Problem

Dynamic

OMT Design Sheet

OMT Design Sheet

BANK SYSTEM MAIN

2 12/9/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the Object Model for a Bank System
which tracks customer accounts and safety
deposit boxes.

Object

Problem

Dynamic

Safe_Deposit_Box

Assign

Account

Interest_Rate
Compound_Period
Balance

Open
Close
Check_Balance
Request_History

Transaction

Type
Amount
DateTimeStamp

Terminal

Customer

Name
Address

Create

Bank

CD

Maturity_Date
Purchase_Price
Premature_Redeem_Fee
Auto_Rollover

Cash_Out

Mortgage

Variable_Rate
Mortgage_Ins
Assessed_Value

Repossess

Loan

Loan_Amt
Cum_Interest
Min_Payment

Make_Payment
Refinance
Calc_Principal_Owed

College

Federal_Programs

Cashier

Dispense_Cash
Accept_Money

Share

Make_Deposit

Draft

Write_Check
Cancel_Check
Order_Checks

Saving

Withdraw

Acct #
Accesses

Uses

Acct #

Has

Owns

Employs

Holds

Has

Retreives

Box #

Rents

Talks To

Terminal

Main Screen
do: display screen

Main Screen
do: display screen

do: request account
number

do: display account
info and balance

do: prompt to
 continue

do: request
transaction kind

do: request amount

[enter account number]

enter data

[enter deposit / withdrawal]

[enter balance
inquiry]

OMT Design Sheet

BANK SYSTEM MAIN

3 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the state diagram for a terminal.

Object

Problem

Dynamic

display results

Scenario #1 (Normal)

The customer asks the cashier for an account
balance on savings account 1069.

The cashier enters the request into a terminal.
The terminal contacts the account through a

transaction.
The account returns the account balance of

$249.63.
The terminal outputs the result to the cashier.
The cashier tells the balance to the customer.
The customer requests a $100 withdrawal

from the same account.
The cashier enters the request into the

terminal.
The terminal contacts the account through a

second transaction.
The account determines that sufficient funds

exist and returns an "OK".
The terminal outputs an OK to the cashier.
The cashier dispenses $100 to the customer.

Scenario #2 (Exception)

The customer requests a $900 withdrawal
from the same account.

The cashier enters the request into the
terminal.

The terminal contacts the account through a
second transaction.

The account determines that sufficient funds
do not exist and returns an error.

The terminal outputs an error to the cashier.
The cashier informs the customer that the

account does not have enough funds to
BANK SYSTEM MAIN

4 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

These are two sample scenarios and event
traces simulating user interaction with the
system.

Object

Problem

Dynamic

OMT Design Sheet

C
us

to
m

er

C
as

hi
er

T
er

m
in

al

A
cc

ou
nt

 dispense
cash

 output
OK return

OK

 attempts
transaction

 enters
request

requests
balance

 request
withdrawal

 tells
result

 outputs
result returns

result

 attempts
transaction

enters
request

C
us

to
m

er

C
as

hi
er

T
er

m
in

al

A
cc

ou
nt

deny
request

output
error return

error

 attempts
transaction

 enters
request

 request
withdrawal

BANK SYSTEM MAIN

5 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the Context DFD and Level 0 DFD for
the Bank System.

Object

Problem

Dynamic

OMT Design Sheet

Bank
System

Cashier

Customer

acct #, transaction

type, amounts

account info,
messages

Cashier

Account

read
inputsCustomer

acct #, transaction

type, amounts
account info,

m
essages

acco
unt in

fo,

ca
sh

, c
hecks

requests, cash

acco
unt in

fo,

ca
sh

, c
hecks

requests, cash

ba
la

nc
e

perform
transaction

generate
outputs

Context Data Flow Diagram (DFD)

Level 0 Data Flow Diagram (DFD)

Level 1 Data Flow Diagram (DFD)
(sheet 6)

BANK SYSTEM MAIN

6 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the Level 1 Data Flow Diagram showing
Level 1 processes substituted into the Level 0
DFD.

Object

Problem

Dynamic

OMT Design Sheet

Cashier

Account
Database

Customer

Terminal

acct #, transaction

type, amounts

acct #, transaction

type, am
ounts

account info,
messages

account info,
messages

acco
unt in

fo,

ca
sh

, c
hecks

acct #

ba
la

nc
e

ch
an

ge

 New Account

Num
ber

ac
ct

 #
, t

yp
e,

 a
m

ou
nt

requests, cash

generate
outputs

compute
balance

update
account

open
account

enter
inputsdisplay

results

Level 1 Data Flow Diagram (DFD)

BANK SYSTEM MAIN

7 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the process decomposition diagram for
the Bank System.

Object

Problem

Dynamic

OMT Design Sheet

Main

read
Inputs

customer
makes

requests of
cashier

cashier
enters into

terminal
open

account

generate
new account

number
creates
account

update
account

make
withdrawal

add
deposit

compute
balance

terminal
displays
results

to cashier

cashier
relays
results

to
customer

process
transaction

generate
outputs

add
interest deduct

fees

Process Decomposition Diagram

Level 0

Level 1

Level 2

Assignment #3

HYPERTEXT
SYSTEM

A simplified hypertext system is needed which will allow browsers to
navigate through linked web pages. Pages will be hosted on a web
server, may include GIF and JPEG graphics, and may include links to
other resources. The system should support concurrent browsers and
current accesses to the same resource.

The user may view a web page or image by specifying a URL (Universal
Resource Locator). The browser will then send the URL to the
appropriate web server in the form of an HTTP request. The server
should accept the request and return the requested resource. If the
resource was an HTML page including image tags, the associated images
should be returned to the browser as well. The browser should then
render the page as described by the tags. If the user clicks on a link
within the displayed web page, the browser should send a new HTTP
request to the server to retreieve the linked resource.

Pages will be written in a subset of the HTML markup language.
Supported tags are limited to <A HREF> and . <A HREF>
tags link to the URL of other resources. tags indicate that a
specific image should be passed to the browser along with the enclosing
HTML file. Beside HTML tags, individual web pages may also contain
body text.

GIFs may be transparent, include GIF89a animations, or be saved with a
specific palette. JPEGs may be progressive and are saved at specific
compression ratios.

HYPERTEXT SYSTEM MAIN

1 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the Problem Statement for a Hypertext
System.

Object

Problem

Dynamic

OMT Design Sheet

OMT Design Sheet

HYPERTEXT SYSTEM MAIN

2 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the Object Model for a HyperText
System which allows uses to browse linked web
pages.

Object

Problem

Dynamic

HTTP Server

Accept_HTTP_Request
Send_File
Send_File
Find_File

Word

Web PageImage

File

URL

<A HREF>

GIF

transparent
GIF89a
Palette

JPEG

Progressive
Compression Ratio

Body TextHTML Tag

Browser

Open_Location
Send_HTTP_Request
Render_Page

URL

links to

pathname

hosts

contains

communicates
with

URL
loads

Browser

Web Server

OMT Design Sheet

HYPERTEXT SYSTEM MAIN

3 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

These are the state diagrams for a browser and
a web server.

Object

Problem

Dynamic

Wait for response

Error
do: display 404 error
 message

Render
do: Display returned resources
 on the monitor

Get Resource

do: send HTTP request to
 web server

Ready

user quits browser

user launches browser

server returns an error
or timeouts

server returns files

user enters a URL or clicks a link

do: scan web
 page

do: transmit
 web page

do: transmit
 graphic file

Error
do: return 404 error
 message

do: find requested
 resource

Ready

shutdown

found image tag

found image file

no images found

found text file

file not found

receive HTTP request (URL)

boot

Scenario #1 (Normal)

The user tells the browser to open page
"HelloWorld.html" on server "Webster.edu"

The browser sends an HTTP request to
Webster.edu.

The Webster.edu server accepts the requests
and scans file HelloWorld.html.

The Webster.edu server sends the file
HelloWorld.html back to the browser.

The Webster.edu server sends the file
Logo.gif back to the browser.

The browser renders the page.
The user clicks on a link to the file "Index.html"

on the server "Yahoo.com".
The browser sends an HTTP request to

Yahoo.com

Scenario #2 (Exception)

The user tells the browser to open page
"HelloWorld.html" on server "Webster.edu"

The browser sends an HTTP request to
Webster.edu.

The Webster.edu server accepts the request.
The Webster.edu server cannot find the file

HelloWorld.html.
The Webster.edu server returns an error

message to the browser.
The browser displays an error message to the

user.

HYPERTEXT SYSTEM MAIN

4 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

These are two sample scenarios and event
traces simulating user interaction with the
system.

Object

Problem

Dynamic

OMT Design Sheet

Browser Web ServerUser

 requests Index.html

 clicks on Yahoo.com/
Index.html

displays Logo.gif

renders
HelloWorld.html

 sends Logo.gif

 Sends
HelloWorld.html

 requests
HelloWorld.html

 opens Webster.edu/
HelloWorld.html

displays
error message

 Sends
error message

 requests
HelloWorld.html

 opens Webster.edu/
HelloWorld.html

HYPERTEXT SYSTEM MAIN

5 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the Context DFD and Level 0 DFD for
the HyperText System.

Object

Problem

Dynamic

OMT Design Sheet

HyperText
System

User
Requests pages

graphical pageviews

Context Data Flow Diagram (DFD)

Level 0 Data Flow Diagram (DFD)

User

Browser Web
Server

requests pages,

mouse clicks

HTTP requests

HTML files,
GIF and JPEG images

rendered
graphical views,

error messages

Main

get
input

type
into

browser
click on

link request
from server

open
network

connection

send
HTTP

request

close
network

connection

find
file

scan
web page

render
web page

and graphics

place
image

draw
text

display
error

message

retrieve
resource

determine
files to
send

send
files to

browser

display
output

open
network

connection
transmit

file
close

network
connection

Process Decomposition Diagram

Level 0

Level 1

Level 2

HYPERTEXT SYSTEM MAIN

6 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the process decomposition diagram for
the HyperText System.

Object

Problem

Dynamic

OMT Design Sheet

Assignment #4

WORK ORDER
SYSTEM

A school district needs a work-order system to help track computer
repairs. Each work order is reported by a school-based technology
manager. After being reported, the order is routed to the District Support
Manager, who assigns it to a technician. Orders are tracked by date,
technician, computer, and facility for cost auditing. The initial problem and
final solution to each order are also retained to help solve future orders.
Each technician can be assigned several orders at once, and each
technology manager can have several open orders. Each school owns
many computers, but only has one technology manager. A separate order
is always filed for each computer involved in a problem, and a new order
is opened with each reoccurance of the problem. New work orders are
unassigned until a technician is given responsibility for them.

WORK ORDER SYSTEM MAIN

1 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the Problem Statement for a Work Order
System.

Object

Problem

Dynamic

OMT Design Sheet

OMT Design Sheet

WORK ORDER SYSTEM MAIN

2 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the Object Model for a Work Order
System which tracks computer service and
repair.

Object

Problem

Dynamic

District Support Manager

Work Order

Date
Problem
Solution
Cost

add
close

Technician

Computer

Prop-Rec-Num
RAM
HD
Warranty Date

Technology Manager

District

Teacher

School

Name

owns

manages

reports

is-assigned

assigns

complains-to

serves

uses

teaches atis based at

has

involves

complete (order)

Computer Work Order

OMT Design Sheet

WORK ORDER SYSTEM MAIN

3 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

These are the state diagrams for a computer
and a work order

Object

Problem

Dynamic

Works

Broken

Dead

 (unfixable)

 (fixable)
/ fixed

 / someone
 sneezes

 (brand-new)

Closed

Assigned

Unassigned

 / complete

 / assign

 / reported

Scenario #1 (Normal—not really)

A floppy disk drive breaks on a
teacher's Mac at a school

The teacher complains to the
school's Technology Manager.

The school's Technology Manager
creates a new work order.

The Technology sends the work
order to the District Support
Manager.

The District Support Manager
assigns the order to Alfonso the
technician.

Alfonso fixes the drive.
Alfonso reports success to the

District Support Manager.
The District Support Manager

closes the work order.
The District Support Manager

reports success to the school
Technology Manager.

The Technology Manager tells the
teacher.

Scenario #2 (Exception—not really)

A PC breaks at a school.
The teacher complains to the

school's Technology Manager.
The school's Technology Manager

creates a new work order.
The Technology sends the work

order to the District Support
Manager.

The District Support Manager
assigns the order to John the
technician.

John never shows up.
The Technology Manager reports

an error message to the District
Support Manager and the
teacher.

HYPERTEXT SYSTEM MAIN

4 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

These are two sample scenarios and event
traces simulating user interaction with the
system.

Object

Problem

Dynamic

OMT Design Sheet

T
ec

hn
ic

ia
n

T
ec

hn
ol

og
y

M
an

ag
er

D
is

tr
ic

t
S

up
po

rt
M

an
ag

er

W
or

k
O

rd
er

T
ea

ch
er

C
om

pu
te

r
 notifies

 fixes

 assigns-to

 notifies

 notifies

 closes

 sends-to

 creates

 complains
to

 breaks

 assigns-to

reports
error

 sends-to

reports error

 creates

 complains
to

 breaks

WORK ORDER SYSTEM MAIN

5 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the Context DFD and Level 0 DFD for
the Work Order System.

Object

Problem

Dynamic

OMT Design Sheet

Work Order
System

Context Data Flow Diagram (DFD)

Level 0 Data Flow Diagram (DFD)

Tech Mgr

Technician

Support Mgr

what broke, when, w
he

re
, ho

w

how

what has broken

recently

w
ho should fix it

what was done

to fix it

Tech Mgr

Technician

Add New
Order

Complete
Order

Assign
Order

Support Mgr

what broke, when, w
he

re
, ho

w

how

what has broken

recently

w
ho should fix it

what was done

so
lu

tio
n

to fix it

Service
Databasewhat

w
hat

which are mine

w
h

o

Main

add
order

enter
work order
data values

route
to District

Support Mgr
calculate
optimum

assignment

enter
solution

close
order

assign
order

route
to selected
technician

compute
current travel

plan for all
techs

compute
current load

for all
techs

combine
weighted
factors

compute
historical

effectiveness
w/similar
problems

complete
order

Process Decomposition Diagram

Level 0

Level 1

Level 2

WORK ORDER SYSTEM MAIN

6 12/7/97

Project

Model

Functional

Description

Module

Sheet Rev Date

This is the process decomposition diagram for
the Work Order System.

Object

Problem

Dynamic

OMT Design Sheet

	Title
	Assignment #1: Textbook Exercises
	Bank System
	HyperText System
	Work Order System

